Flash sintering of UO2 pellets for nuclear fuel and wasteform applications

被引:0
作者
Harrison, R. W. [1 ]
Morgan, J. [1 ]
Buckley, J. [1 ]
Bostanchi, S. [2 ]
Pearmain, D. [2 ]
Abram, T. [1 ]
Goddard, D. [3 ]
Barron, N. [4 ]
机构
[1] Univ Manchester, Nucl Fuel Ctr Excellence, Dept Mech Aerosp & Civil Engn, Manchester M13 9PL, England
[2] Lucideon Ltd, Queens Rd, Stoke On Trent ST4 7LQ, England
[3] Preston Lab, Natl Nucl Lab, Springfields, Preston PR4 0XJ, England
[4] Cent Lab, Natl Nucl Lab, Seascale, Sellafield CA20 1PG, England
基金
英国工程与自然科学研究理事会;
关键词
Nuclear fuel; Nuclear waste; Flash sintering; Field assisted sintering; MOx; ELECTRICAL PROPERTIES; URANIUM-DIOXIDE; MECHANISM; PHASE; THO2;
D O I
10.1016/j.jeurceramsoc.2024.116993
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flash sintering (FS) has been shown to enhance the sintering kinetics in UO2. Using a bespoke AC-FS furnace, high density UO2 pellets, >95 % theoretical density (TD) have been produced followed by scale up and Gd2O3 doping trials. Increasing furnace temperature during FS increases pellet density to a plateau, however, increasing hold time and maximum current both increased the density of UO2 samples to >95 % TD and grain size to similar to 4 mu m, close to conventional sintering (CS). The optimised FS program reduced sintering temperature and cycle time by similar to 50 % compared to CS. Scale up trials showed >96 %TD pellets could be achieved for 11.3 and 14.125 mm diameter green bodies, demonstrating typical fuel pellet diameters are feasible with FS. Gd doping experiments showed with 1 wt% Gd2O3 addition, a similar to 92 %TD pellet with similar to 2 mu m grain size was obtainable, highlighting further optimisation is required for mixed oxide (MOx) materials.
引用
收藏
页数:14
相关论文
共 29 条
[1]  
Abe T, 2012, COMPREHENSIVE NUCLEAR MATERIALS, VOL 2: MATERIAL PROPERTIES/OXIDE FUELS FOR LIGHT WATER REACTORS AND FAST NEUTRON REACTORS, P393
[2]  
American Society for Testing and Materials (ASTM), 2013, ASTM E872-82: Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, DOI [DOI 10.1520/E0112-13.1.4, 10.1520/E0647-15E01, DOI 10.1520/E0112-13]
[3]   ELECTRICAL PROPERTIES OF NONSTOICHIOMETRIC URANIUM DIOXIDE [J].
ARONSON, S ;
RULLI, JE ;
SCHANER, BE .
JOURNAL OF CHEMICAL PHYSICS, 1961, 35 (04) :1382-&
[4]   DORN METHOD IN STUDY OF INITIAL PHASE OF URANIUM DIOXIDE SINTERING [J].
BACMANN, JJ ;
CIZERON, G .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1968, 51 (04) :209-&
[5]   Lattice contraction and lattice deformation of UO2 and ThO2 doped with Gd2O3 [J].
Baena, Angela ;
Cardinaels, Thomas ;
Govers, Kevin ;
Pakarinen, Janne ;
Binnemans, Koen ;
Verwerft, Marc .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :135-143
[6]   SINTERING MECHANISM IN UO2+X [J].
BANNISTER, MJ ;
BUYKX, WJ .
JOURNAL OF NUCLEAR MATERIALS, 1977, 64 (1-2) :57-65
[7]   ELECTRICAL CONDUCTIVITY OF URANIUM DIOXIDE [J].
BATES, JL ;
HINMAN, CA ;
KAWADA, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1967, 50 (12) :652-&
[8]   A disposal-MOX concept for plutonium disposition [J].
Cole, Max R. ;
Blackburn, Lewis R. ;
Haigh, Latham T. ;
Bailey, Daniel J. ;
Townsend, Luke T. ;
Kvashnina, Kristina O. ;
Hyatt, Neil C. ;
Corkhill, Claire L. .
MATERIALS ADVANCES, 2024, 5 (16) :6416-6425
[9]  
Cologna M., 2020, Use of Field Assisted Sintering for Innovation in Nuclear Ceramics Manufacturing, DOI [10.1016/b978-0-12-803581-8.11734-5, DOI 10.1016/B978-0-12-803581-8.11734-5]
[10]   Development and comparison of field assisted sintering techniques to densify CeO2 ceramics [J].
Harrison, R. W. ;
Morgan, J. ;
Buckley, J. ;
Bostanchi, S. ;
Green, C. ;
White, R. ;
Pearmain, D. ;
Abram, T. ;
Goddard, D. T. ;
Barron, N. J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (14) :6599-6607