Co-production of reducing sugars and xylo-oligosaccharides from rape straw through sodium dodecyl sulfate-mediated p-toluenesulfonic acid pretreatment

被引:3
作者
Li, Xiangguo [1 ]
Wang, Yue [1 ]
Tang, Wei [1 ]
Fan, Bo [1 ]
He, Yu-Cai [1 ,2 ]
Ma, Cuiluan [2 ]
机构
[1] Changzhou Univ, Sch Pharm & Biol & Food Engn, Changzhou 213164, Peoples R China
[2] Hubei Univ, State Key Lab Biocatalysis & Enzyme Engn, Wuhan 430062, Peoples R China
关键词
Pretreatment; Xylo-oligosaccharides; Reducing sugar; Saccharification; Biorefining; IONIC LIQUID PRETREATMENT; LIGNOCELLULOSIC BIOMASS; ENZYMATIC-HYDROLYSIS; LIGNIN; XYLOOLIGOSACCHARIDES; CELLULOSE; WASTE;
D O I
10.1016/j.indcrop.2024.119888
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This research explored the efficacy of surfactant-mediated p-toluenesulfonic acid (p-TsOH) pretreatment for rape straw (RS) biomass fractionation toward improved enzymatic digestion. The effects of the type of surfactants [dodecyltrimethylammonium bromide (DTAB), sodium dodecyl sulfate (SDS), and Tween 80] on the pretreatment of p-TsOH were testified. Among them, anionic surfactant SDS rendered the best pretreatment effect. The pretreatment with SDS plus p-TsOH afforded effectual delignification (67.3 %+1.8 %) and xylan elimination (86.4+1.3 %), and the saccharification efficacy reached 81.5+1.2 %. In the pretreatment liquor, xylooligosaccharides (2.2 g/L) formed. Structural characterization of the pretreated RS implied effectual disruption of lignin-carbohydrate complexes, increased biomass porosity, weakened lignin surface area, declined ineffective adsorption of cellulases on lignin, and enhanced accessibility of cellulases to cellulose, contributing to improved enzymatic saccharification efficacy. Afterwards, the possible combination pretreatment mechanism was proposed. To sum up, this research afforded an effectual and eco-friendly approach for the refining of lignocellulose.
引用
收藏
页数:12
相关论文
共 92 条
[1]   Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse [J].
Aguilar, Daniela L. ;
Rodriguez-Jasso, Rosa M. ;
Zanuso, Elisa ;
de Rodriguez, Diana Jasso ;
Amaya-Delgado, Lorena ;
Sanchez, Arturo ;
Ruiz, Hector A. .
BIORESOURCE TECHNOLOGY, 2018, 263 :112-119
[2]   Improved saccharification of pretreated lignocellulose by Clostridium thermocellum with the addition of surfactant, low loading of cellulose [J].
An, Qian ;
Lin, Huan-Na ;
Wang, Yu-Tao ;
Deng, Mao-Cheng ;
Zhu, Ming-Jun .
PROCESS BIOCHEMISTRY, 2021, 111 :267-273
[3]   Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis [J].
An, Xingye ;
Wen, Yangbing ;
Cheng, Dong ;
Zhu, Xuhai ;
Ni, Yonghao .
CELLULOSE, 2016, 23 (04) :2409-2420
[4]   Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives [J].
Anh Tuan Hoang ;
Nizetic, Sandro ;
Ong, Hwai Chyuan ;
Chong, Cheng Tung ;
Atabani, A. E. ;
Van Viet Pham .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 296
[5]   A designed ZrOCl2/ethylene glycol deep eutectic solvent for efficient lignocellulose valorization [J].
Bai, Yunhua ;
Zhang, Xiong-Fei ;
Yu, Mengjiao ;
Yao, Jianfeng .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 275
[6]   Furfural production from lignocellulosic biomass: one-step and two-step strategies and techno-economic evaluation [J].
Bao, Yuqi ;
Du, Zicheng ;
Liu, Xiaoying ;
Liu, Hui ;
Tang, Jinsong ;
Qin, Chengrong ;
Liang, Chen ;
Huang, Caoxing ;
Yao, Shuangquan .
GREEN CHEMISTRY, 2024, 26 (11) :6318-6338
[7]   Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review [J].
Beig, Bilal ;
Riaz, Muhammad ;
Naqvi, Salman Raza ;
Hassan, Muhammad ;
Zheng, Zhifeng ;
Karimi, Keikhosro ;
Pugazhendhi, Arivalagan ;
Atabani, A. E. ;
Chi, Nguyen Thuy Lan .
FUEL, 2021, 287
[8]   Pre-, pro-, and postbiotics development from vegetable, fruit, and lignocellulosic biomass: A perspective [J].
Bhatia, Latika ;
Sarangi, Prakash Kumar ;
Singh, Akhilesh Kumar ;
Srivastava, Rajesh K. ;
Chandel, Anuj K. .
FOOD BIOSCIENCE, 2024, 61
[9]   Comparison of soybean hull pre-treatments to obtain cellulose and chemical derivatives: Physical chemistry characterization [J].
Camiscia, Paola ;
Giordano, Enrique D. V. ;
Brassesco, M. Emilia ;
Fucinos, Pablo ;
Pastrana, Lorenzo ;
Cerqueira, M. F. ;
Pico, Guillermo A. ;
Valetti, Nadia Woitovich .
CARBOHYDRATE POLYMERS, 2018, 198 :601-610
[10]   Enhancement of Biological Pretreatment on Rice Straw by an Ionic Liquid or Surfactant [J].
Chang, Ken-Lin ;
Liu, Chun-Hung ;
Phitsuwan, Paripok ;
Ratanakhanokchai, Khanok ;
Lin, Yung-Chang ;
Dong, Cheng-Di ;
Lin, Ming-Hsun ;
Yang, Gordon C. C. .
CATALYSTS, 2021, 11 (11)