Fusion of generative adversarial networks and non-negative tensor decomposition for depression fMRI data analysis

被引:8
作者
Wang, Fengqin [1 ]
Ke, Hengjin [2 ,3 ]
Tang, Yunbo [4 ]
机构
[1] Hubei Normal Univ, Sch Phys & Elect Sci, Huangshi 435003, Peoples R China
[2] Hubei Polytech Univ, Comp Sch, Huangshi Key Lab Computat Neurosci & Brain Inspire, Huangshi 435003, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[4] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Generative adversarial networks; Non-negative tensor decomposition; Classification; Depression; fMRI; BRAIN; FACTORIZATION; DIMENSIONALITY; OPTIMIZATION; ACCURATE; ROBUST; RANK;
D O I
10.1016/j.ipm.2024.103961
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: This study introduces a novel approach, F-GAN-NTD, which integrates Generative Adversarial Networks (GANs) with Non-negative Tensor Decomposition (NTD) theory to enhance the analysis of functional Magnetic Resonance Imaging (fMRI) data related to depression. Methods: F-GAN-NTD is applied to extract nonlinear non-negative factors from multidimensional fMRI tensor data, utilizing Deep-NTD technology to generate factor matrices that capture latent structures and dynamic features. A multi-view neural network architecture processes these factor matrices from all modalities simultaneously, enabling comprehensive pattern discrimination between depression patients and healthy controls. The method is tested on the Closed Eyes Depression fMRI (CEDF) and Strategic Research Program for Brain Sciences (SRPBS) datasets. Results: The F-GAN-NTD method demonstrates significant improvements in fMRI data classification, outperforming traditional approaches. It also effectively restores incomplete fMRI tensor data and reveals abnormal brain network connections, offering insights into the pathophysiological mechanisms of depression. Conclusions: F-GAN-NTD enhances the extraction of meaningful features from fMRI data, improving classification performance and providing a deeper understanding of depression-related brain abnormalities. The integration across modalities contributes to a more comprehensive analysis of depression.
引用
收藏
页数:26
相关论文
共 51 条
[11]  
Fang SK, 2021, PR MACH LEARN RES, V139
[12]  
Gadgil Soham, 2020, Med Image Comput Comput Assist Interv, V12267, P528, DOI 10.1007/978-3-030-59728-3_52
[13]   Depression, Neuroimaging and Connectomics: A Selective Overview [J].
Gong, Qiyong ;
He, Yong .
BIOLOGICAL PSYCHIATRY, 2015, 77 (03) :223-235
[14]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[15]   Accurate and robust brain image alignment using boundary-based registration [J].
Greve, Douglas N. ;
Fischl, Bruce .
NEUROIMAGE, 2009, 48 (01) :63-72
[16]  
Gu AL, 2022, Arxiv, DOI arXiv:2111.00396
[17]   AWGAN: An adaptive weighting GAN approach for oversampling imbalanced datasets [J].
Guan, Shaopeng ;
Zhao, Xiaoyan ;
Xue, Yuewei ;
Pan, Hao .
INFORMATION SCIENCES, 2024, 663
[18]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[19]   Altered resting-state functional connectome in major depressive disorder: a mega-analysis from the PsyMRI consortium [J].
Javaheripour, Nooshin ;
Li, Meng ;
Chand, Tara ;
Krug, Axel ;
Kircher, Tilo ;
Dannlowski, Udo ;
Nenadic, Igor ;
Hamilton, J. Paul ;
Sacchet, Matthew D. ;
Gotlib, Ian H. ;
Walter, Henrik ;
Frodl, Thomas ;
Grimm, Simone ;
Harrison, Ben J. ;
Wolf, Christian Robert ;
Olbrich, Sebastian ;
van Wingen, Guido ;
Pezawas, Lukas ;
Parker, Gordon ;
Hyett, Matthew P. ;
Saemann, Philipp G. ;
Hahn, Tim ;
Steinstraeter, Olaf ;
Jansen, Andreas ;
Yuksel, Dilara ;
Kaempe, Robin ;
Davey, Christopher G. ;
Meyer, Bernhard ;
Bartova, Lucie ;
Croy, Ilona ;
Walter, Martin ;
Wagner, Gerd .
TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
[20]   Improved optimization for the robust and accurate linear registration and motion correction of brain images [J].
Jenkinson, M ;
Bannister, P ;
Brady, M ;
Smith, S .
NEUROIMAGE, 2002, 17 (02) :825-841