Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains

被引:2
作者
dos Santos, Leandro Vieira [1 ,2 ]
Neitzel, Thiago [3 ]
Lima, Cleiton Santos [4 ]
de Carvalho, Lucas Miguel [1 ,5 ]
de Lima, Tatiani Brenelli [6 ]
Ienczak, Jaciane Lutz [7 ]
Correa, Thamy Livia Ribeiro [8 ]
Pereira, Goncalo Amarante Guimaraes [1 ]
机构
[1] State Univ Campinas Unicamp, Inst Biol, Genet & Mol Biol Grad Program, BR-13083862 Campinas, SP, Brazil
[2] Univ Manchester, Manchester Inst Biotechnol, 131 Princess St, Manchester M1 7DN, England
[3] Univ Campinas Unicamp, Fac Food Engn, Program Bioenergy, BR-13083862 Campinas, SP, Brazil
[4] Univ Sao Paulo, Engn Coll Lorena, Dept Biotechnol, BR-12602810 Lorena, SP, Brazil
[5] Sao Francisco Univ, Post Grad Program Hlth Sci, BR-12916900 Braganca Paulista, SP, Brazil
[6] Josep Carreras Leukaemia Res Inst IJC, Prote Unit, Ctra Can Ruti,Cami Escoles S-N, Badalona 08916, Barcelona, Spain
[7] Univ Fed Santa Catarina, Dept Chem & Food Engn, BR-88040900 Florianopolis, SC, Brazil
[8] Univ York, Dept Chem, York YO10 5DD, England
基金
巴西圣保罗研究基金会;
关键词
Saccharomyces cerevisiae; Metabolic engineering; Second-generation ethanol; Redox balance; PENTOSE-PHOSPHATE PATHWAY; XYLITOL DEHYDROGENASE; FERMENTATION; REDUCTASE; DELETION; IMPROVES; PHO13; GENE; ENHANCEMENT; EXPRESSION;
D O I
10.1016/j.micres.2024.127955
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The transition from fossil fuels dependency to embracing renewable alternatives is pivotal for mitigating greenhouse gas emissions, with biorefineries playing a central role at the forefront of this transition. As a sustainable alternative, lignocellulosic feedstocks hold great promise for biofuels and biochemicals production. However, the effective utilization of complex sugars, such as xylose, remains a significant hurdle. To address this challenge, yeasts can be engineered as microbial platforms to convert the complex sugars derived from biomass. The efficient use of xylose by XR-XDH strains still poses a significant challenge due to redox imbalance limitations, leading to the accumulation of undesirable by-products. In this study, we focused on engineering the industrial S. cerevisiae strain PE-2, known for its robustness, and compared different strategies to balance cellular redox homeostasis, guided by a genome-scale metabolic model. Flux balance analysis guided the selection of four approaches: i. decoupling NADPH regeneration from CO2 production; ii. altering XDH cofactor affinity; iii. shifting XR cofactor preference; iv. incorporating alternate phosphoketolase and acetic acid conversion pathways. A comparative time-course targeted metabolic profile was conducted to assess the redox status of xylosefermenting cells under anaerobic conditions. The main limitations of xylose-fermenting strains were tested and the replacement of xylose reductase with a NADH-preferred XR in the LVY142 strain proved to be the most effective strategy, resulting in an increase in ethanol yield and productivity, coupled with a reduction in byproducts. Comparative analysis of various genetic approaches provided valuable insights into the complexities of redox engineering, highlighting the need for tailored strategies in yeast metabolic engineering for efficient biofuels and biochemicals production from lignocellulosic feedstocks.
引用
收藏
页数:14
相关论文
共 80 条
[1]   Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production [J].
Argueso, Juan Lucas ;
Carazzolle, Marcelo F. ;
Mieczkowski, Piotr A. ;
Duarte, Fabiana M. ;
Netto, Osmar V. C. ;
Missawa, Silvia K. ;
Galzerani, Felipe ;
Costa, Gustavo G. L. ;
Vidal, Ramon O. ;
Noronha, Melline F. ;
Dominska, Margaret ;
Andrietta, Maria G. S. ;
Andrietta, Silvio R. ;
Cunha, Anderson F. ;
Gomes, Luiz H. ;
Tavares, Flavio C. A. ;
Alcarde, Andre R. ;
Dietrich, Fred S. ;
McCusker, John H. ;
Petes, Thomas D. ;
Pereira, Goncalo A. G. .
GENOME RESEARCH, 2009, 19 (12) :2258-2270
[2]   Yeast selection for fuel ethanol production in Brazil [J].
Basso, Luiz C. ;
de Amorim, Henrique V. ;
de Oliveira, Antonio J. ;
Lopes, Mario L. .
FEMS YEAST RESEARCH, 2008, 8 (07) :1155-1163
[3]   Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae [J].
Bengtsson, Oskar ;
Hahn-Hagerdal, Barbel ;
Gorwa-Grauslund, Marie F. .
BIOTECHNOLOGY FOR BIOFUELS, 2009, 2
[4]   A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation [J].
Bera, Aloke K. ;
Ho, Nancy W. Y. ;
Khan, Aftab ;
Sedlak, Miroslav .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (05) :617-626
[5]   Positive Selection Evidence in Xylose-Related Genes Suggests Methylglyoxal Reductase as a Target for the Improvement of Yeasts' Fermentation in Industry [J].
Borelli, Guilherme ;
Fiamenghi, Mateus Bernabe ;
dos Santos, Leandro Vieira ;
Carazzolle, Marcelo Falsarella ;
Guimaraes Pereira, Goncalo Amarante ;
Jose, Juliana .
GENOME BIOLOGY AND EVOLUTION, 2019, 11 (07) :1923-1938
[6]   Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic Metabolites [J].
Buescher, Joerg Martin ;
Moco, Sofia ;
Sauer, Uwe ;
Zamboni, Nicola .
ANALYTICAL CHEMISTRY, 2010, 82 (11) :4403-4412
[7]   Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae [J].
Cadete, Raquel M. ;
de las Heras, Alejandro M. ;
Sandstrom, Anders G. ;
Ferreira, Carla ;
Girio, Francisco ;
Gorwa-Grauslund, Marie-Francoise ;
Rosa, Carlos A. ;
Fonseca, Cesar .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
[8]   Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives [J].
Cai, Zhen ;
Zhang, Bo ;
Li, Yin .
BIOTECHNOLOGY JOURNAL, 2012, 7 (01) :34-46
[9]   New Protocol Based on UHPLC-MS/MS for Quantitation of Metabolites in Xylose-Fermenting Yeasts [J].
Campos, Christiane Goncalves ;
Teixeira Veras, Henrique Cesar ;
de Aquino Ribeiro, Jose Antonio ;
Kalil Goncalves Costa, Patricia Pinto ;
Araujo, Katiuscia Pereira ;
Rodrigues, Clenilson Martins ;
Moreira de Almeida, Joao Ricardo ;
Abdelnur, Patricia Verardi .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (12) :2646-2657
[10]   Leakage-free rapid quenching technique for yeast metabolomics [J].
Canelas, Andre B. ;
Ras, Cor ;
ten Pierick, Angela ;
van Dam, Jan C. ;
Heijnen, Joseph J. ;
Van Gulik, Walter M. .
METABOLOMICS, 2008, 4 (03) :226-239