Shortcuts to adiabaticity in harmonic traps: A quantum-classical analog
被引:0
|
作者:
Hardel, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, FranceUniv Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
Hardel, Vincent
[1
]
Manfredi, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, FranceUniv Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
Manfredi, Giovanni
[1
]
Hervieux, Paul-Antoine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, FranceUniv Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
Hervieux, Paul-Antoine
[1
]
Goerlich, Remi
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Sch Chem, IL-6997801 Tel Aviv, IsraelUniv Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
Goerlich, Remi
[2
]
机构:
[1] Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Chem, IL-6997801 Tel Aviv, Israel
We present a technique for efficiently transitioning a quantum system from an initial to a final stationary state in less time than is required by an adiabatic (quasistatic) process. Our approach makes use of Nelson's stochastic quantization, which represents the quantum system as a classical Brownian process. Thanks to this mathematical analogy, known protocols for classical overdamped systems can be translated into quantum protocols. In particular, one can use classical methods to find optimal quantum protocols that minimize both the time duration and some other cost function to be freely specified. We have applied this method to the time-dependent harmonic oscillator and tested it on two different cost functions: (i) the cumulative energy of the system over time and (ii) the dynamical phase of the wave function. In the latter case, it is possible to construct protocols that are "adiabatically optimal," i.e., they minimize their distance from an adiabatic process for a given duration.
机构:
Russian Acad Sci, Steklov Math Inst, Moscow, Russia
Lomonosov Moscow State Univ, Inst Theoret & Math Phys, Moscow, RussiaRussian Acad Sci, Steklov Math Inst, Moscow, Russia
Potapov, R. A.
Zotov, A. V.
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Steklov Math Inst, Moscow, Russia
Lomonosov Moscow State Univ, Inst Theoret & Math Phys, Moscow, RussiaRussian Acad Sci, Steklov Math Inst, Moscow, Russia