Mesoporous Silica-Carbon Composites with Enhanced Conductivity: Analysis of Powder and Thin Film Forms

被引:0
作者
Karczmarska, Agnieszka [1 ]
Zielinski, Piotr M. [1 ]
Laskowski, Lukasz [1 ]
Prusik, Krystian [2 ]
Pawlik, Katarzyna [3 ]
Laskowska, Magdalena [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
[2] Univ Silesia Katowice, Inst Mat Engn, 75 Pulku Piechoty 1a St, PL-41500 Chorzow, Poland
[3] Czestochowa Tech Univ, Fac Prod Engn & Mat Technol, PL-42201 Czestochowa, Poland
关键词
silica-carbon composite; mesoporous materials; electrical conductivity; electrical resistivity; thin film; silica SBA-15; SILICA/CARBON COMPOSITES; PORE STRUCTURE; SBA-15; CARBONIZATION; TEMPLATE;
D O I
10.3390/ma17246274
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The resistivity of the silica SBA-15 type can be significantly improved by forming a thin layer of carbon on the pore surface. This is possible through the carbonization reaction of a surfactant used as a structure-directing agent in the synthesis of mesostructured silica materials. The synthesis of this type of silica-carbon composite (SBA-C) is based on the use of sulfuric acid to create a carbon layer from surfactant molecules encapsulated in silica mesopores. The action of sulfuric acid takes place through dehydration and sulfonation reactions, which promote the formation of aromatic structures and favor crosslinking processes. The same procedure was applied to prepare MTF-C composites based on mesostructured thin films (MTFs). Compared to pure silica materials, these silica-carbon composites exhibit reduced pore diameter and volume while maintaining morphology and structure. The pore structure characteristics were obtained by scanning and transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, thermogravimetry, and isothermal sorption analysis. The composite obtained after carbon layer formation exhibited enhanced conductivity in comparison to pure silica SBA-15. The resistivity of SBA-C composite material after annealing at 800 degrees C under a nitrogen atmosphere decreased to 1980 Omega cm in comparison with pure SBA-15.
引用
收藏
页数:15
相关论文
共 54 条
  • [1] Khan S., Ajmal Z., Mahmood S., ul Haq M., Synthesis of mesoporous composites based on α-Fe<sub>2</sub>O<sub>3</sub>/NiO nanowires for the photocatalytic degradation of rhodamine B dye, New J. Chem, 47, pp. 10333-10346, (2023)
  • [2] Nuntang S., Poompradub S., Butnark S., Yokoi T., Tatsumi T., Ngamcharussrivichai C., Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization, Mater. Chem. Phys, 143, pp. 1199-1208, (2014)
  • [3] Collard X., El Hajj M., Su B.L., Aprile C., Synthesis of novel mesoporous ZnO/SiO<sub>2</sub> composites for the photodegradation of organic dyes, Microporous Mesoporous Mater, 184, pp. 90-96, (2014)
  • [4] Tang R., Hong W., Srinivasakannan C., Liu X., Wang X., Duan X., A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green, Sep. Purif. Technol, 281, (2022)
  • [5] Fang Y., Zheng G., Yang J., Tang H., Zhang Y., Kong B., Lv Y., Xu C., Asiri A.M., Zi J., Et al., Dual-pore mesoporous carbon@ silica composite core–shell nanospheres for multidrug delivery, Angew. Chem. Int. Ed, 53, pp. 5366-5370, (2014)
  • [6] Yano K., Tatsuda N., Masuda T., Shimoda T., Novel method to incorporate Si into monodispersed mesoporous carbon spheres, J. Colloid Interface Sci, 479, pp. 20-24, (2016)
  • [7] Wang M., Xie R., Chen Y., Pu X., Jiang W., Yao L., A novel mesoporous zeolite-activated carbon composite as an effective adsorbent for removal of ammonia-nitrogen and methylene blue from aqueous solution, Bioresour. Technol, 268, pp. 726-732, (2018)
  • [8] Bandura L., Panek R., Madej J., Franus W., Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances, Fuel, 283, (2021)
  • [9] Mao H., Qiu M., Chen X., Verweij H., Fan Y., Fabrication and in-situ fouling mitigation of a supported carbon nanotube/γ-alumina ultrafiltration membrane, J. Membr. Sci, 550, pp. 26-35, (2018)
  • [10] Alsawat M., Altalhi T., Santos A., Losic D., Carbon nanotubes–nanoporous anodic alumina composite membranes: Influence of template on structural, chemical, and transport properties, J. Phys. Chem. C, 121, pp. 13634-13644, (2017)