Li+ Ion-Dipole Interaction-Enabled a Dynamic Supramolecular Elastomer Interface Layer for Dendrite-Free Lithium Metal Anodes

被引:15
作者
Chen, Jing [1 ,2 ]
Deng, Xuetian [1 ]
Jia, Xin [1 ]
Gao, Yang [1 ]
Chen, Han [2 ]
Lin, Zhiqun [2 ]
Ding, Shujiang [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Minist Educ, Sch Chem,Engn Res Ctr Energy Storage Mat & Devices, Xian 710049, Peoples R China
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119077, Singapore
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; BATTERIES;
D O I
10.1021/jacs.4c08766
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The unstable lithium (Li)/electrolyte interface, causing inferior cycling efficiency and unrestrained dendrite growth, has severely hampered the practical deployment of Li metal batteries (LMBs), particularly in carbonate electrolytes. Herein, we present a robust approach capitalizing on a dynamic supramolecular elastomer (DSE) interface layer, which is capable of being reduced with Li metal to spontaneously form strong Li+ ion-dipole interaction, thereby enhancing interfacial stability in carbonate electrolytes. The soft phase in the DSE structure enables fast Li+ transport via loosely coordinated Li+-O interaction, while the hard phase, rich in electronegative lithiophilic sites, drives the generation of fast-ion-conducting solid electrolyte interface components, including Li3N and Li2S. Furthermore, the dynamically resilient DSE network composed of soft and hard phases protects Li anodes from electrolyte corrosion and accommodates volume changes during cycling. All features of the DSE layer synergistically facilitate uniform Li+ deposition and suppress Li dendrite propagation, ensuring a stable and dendrite-free Li anode. Consequently, the symmetric Li||Li cell incorporating the DSE layer achieves cycling stability exceeding 6000 h under 1 mA cm-2 and 1 mA h cm-2 conditions. Furthermore, full cell pairing DSE/Li anode with LiFePO4 (LFP) or high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes exhibits high-efficiency Li deposition and cycling stability, even under constrained conditions of limited Li (40 mu m) and ultrahigh loading NMC811 cathode (21.5 mg cm-2). This study underscores the effectiveness of the ion-dipole interaction-enabled DSE network in developing stable, high-energy-density LMBs.
引用
收藏
页码:30836 / 30847
页数:12
相关论文
共 58 条
[1]   Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes [J].
Chang, Caiyun ;
Yao, Yuan ;
Li, Rongrong ;
Guo, Zi Hao ;
Li, Longwei ;
Pan, Chongxiang ;
Hu, Weiguo ;
Pu, Xiong .
NANO ENERGY, 2022, 93
[2]   Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes [J].
Chen, Chao ;
Liang, Qianwen ;
Wang, Gang ;
Liu, Dongdong ;
Xiong, Xunhui .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)
[3]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[4]   Multiple Dynamic Bonds-Driven Integrated Cathode/Polymer Electrolyte for Stable All-Solid-State Lithium Metal Batteries [J].
Chen, Jing ;
Deng, Xuetian ;
Gao, Yiyang ;
Zhao, Yuanjun ;
Kong, Xiangpeng ;
Rong, Qiang ;
Xiong, Junqiao ;
Yu, Demei ;
Ding, Shujiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
[5]   Phase-locked constructing dynamic supra- molecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability [J].
Chen, Jing ;
Gao, Yiyang ;
Shi, Lei ;
Yu, Wei ;
Sun, Zongjie ;
Zhou, Yifan ;
Liu, Shuang ;
Mao, Heng ;
Zhang, Dongyang ;
Lu, Tongqing ;
Chen, Quan ;
Yu, Demei ;
Ding, Shujiang .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Self-healing artificial solid electrolyte interphase enhanced by quadruple hydrogen bonding for stable lithium metal anode [J].
Chen, Peng ;
Li, Lingjun ;
Wang, Chu ;
Yi, Hongling ;
Wu, Qifeng ;
Song, Liubin ;
Wu, Xianwen ;
Tan, Lei .
APPLIED SURFACE SCIENCE, 2022, 604
[7]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[8]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[9]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[10]   Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation [J].
Dai, Hongliu ;
Gu, Xingxing ;
Dong, Jing ;
Wang, Chao ;
Lai, Chao ;
Sun, Shuhui .
NATURE COMMUNICATIONS, 2020, 11 (01)