Peculiarities of chemical elements accumulation by epiphytic moss Pylaisia polyantha (Hedw.) B.S.G. in varying natural environments of West Siberia

被引:4
作者
机构
[1] Tomsk State University, pr. Lenina 36, Tomsk
[2] Tomsk Polytechnic University, pr. Lenina 30, Tomsk
来源
Borisenko, A.L. | 1600年 / Routledge卷 / 71期
关键词
Atmosphere pollution; Bio-indication; Epiphytic moss;
D O I
10.1080/00207233.2014.942170
中图分类号
学科分类号
摘要
This study explores the influence of natural environment on the content of chemical elements in the epiphytic moss Pylaisia polyantha, picked from six areas remote from industrial centres in Siberia. The neutron activation analysis determined concentrations of 25 chemical elements (mostly heavy metals). According to correlation analysis, none of the climatic variables (i.e. temperature, precipitation and airflow direction) is separately significant for the accumulation of the examined chemical elements by the moss. The concentrations of chemical elements in mosses picked in different plant subzones or belts definitely vary. This means that the environment characteristic of plant subzones or belts and phytocenosis types influence the accumulation of chemical elements in the moss. The sample selection area belongs to a certain plant subzone or belt and this reflects the overall influence of climatic and other ecological factors. However, phytocenosis properties (i.e. stand thickness, canopy density degree, etc.) impact the concentration of chemical elements in the epiphytic moss primarily due to the sunshade effect. © 2014 Taylor & Francis.
引用
收藏
页码:685 / 690
页数:5
相关论文
共 19 条
[1]  
Figueiredo A.M.G., Saiki M., Ticianelli R.B., Domingos M., Alves E.S., Markert B., Determination of trace elements in Tillandsia usneoides by neutron activation analysis for environmental biomonitoring, Journal of Radioanalytical and Nuclear Chemistry, 249, 2, pp. 391-395, (2001)
[2]  
Haugland T., Steinnes E., Frontasyeva M.V., Trancemetals in soil and plants subjected to strong chemical pollution, Water, Air, and Soil Pollution, 137, pp. 343-353, (2002)
[3]  
Harmens H., Mills G., Hayes F., Williams P., de Temmerman L., Air pollution and vegetation. ICP Vegetation Annual Report 2004/2005, pp. 6-14, (2005)
[4]  
de Temmerman L., Nigel J., Bell B., Garrec J.P., Klumpp A., Krause G.H.M., Tonneijck A.E.G., Biomonitoring of air pollutants with plants, International Society of Environmental Botanists, 11, pp. 26-31, (2005)
[5]  
Ruhling A., Tyler G., Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.) Br. et Sch, Oikos, 21, pp. 92-97, (1970)
[6]  
Puckett K.J., Bryophytes and lichens as monitor of metal deposition, Bibliotheca Lichenologica, 30, pp. 231-267, (1988)
[7]  
Rogova N.S., Ryzhakova N.К., Borisenko A.L., Merkulov V.G., Exploring accumulation properties of mosses used for air pollution monitoring, Atmospheric and Ocean Optics, 24, 1, pp. 79-83, (2011)
[8]  
Ayras M., Niskavaara H., Bogatyrev I., Chekushin V., Pavlov V., de Caritat P., Halleraker J.H., Finne T.E., Kashulina G., Reimann C., Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188,000 km<sup>2</sup>area in northern Finland, Norway and Russia, Journal of Geochemical Exploration, 58, 2-3, pp. 269-281, (1997)
[9]  
Ermakova E.V., Frontasyeva M.V., Pavlov S.S., Povtoreiko E.A., Steinnes E., Cheremisina Y.N., Air pollution studies in Central Russia (Tver and Yaroslavl Regions) using the moss biomonitoring technique and neutron activation analysis, Journal of Atmospheric Chemistry, 49, pp. 549-561, (2004)
[10]  
Liiv S., Kaasik M., Trace metals in mosses in the Estonian oil shale processing region, Journal of Atmospheric Chemistry, 49, pp. 563-578, (2004)