Robust stabilisation of a class of uncertain nonlinear systems

被引:0
作者
Efimov, Denis [1 ]
Raïssi, Tarek [2 ]
Zolghadri, Ali [3 ]
机构
[1] Non-A Project, INRIA, LNE
[2] Centre d'Etude et de Recherche en Informatique et Communications, CNAM, 75141 Paris, 292, Rue St-Martin
[3] Laboratoire de l'Intégration du Matériau Au Système, Université de Bordeaux 1, 33405 Talence
来源
Journal Europeen des Systemes Automatises | 2012年 / 46卷 / 4-5期
关键词
LPV systems; Nonlinear systems; Parameter uncertainties; Robust stabilisation;
D O I
10.3166/JESA.46.335-348
中图分类号
学科分类号
摘要
The problem of output stabilization of a class of nonlinear systems subject to parametric and signal uncertainties is studied. The proposed approach is based on a state feedback where the state bounds are used to compute the stabilizing control. The state bounds are estimated through an interval observer. A control algorithm is designed for the interval observer providing convergence of interval variables to zero, which implies a similar convergence of the state for the original nonlinear system. An application of the proposed technique shows that a robust stabilization can be performed for Linear-Parameter-Varying (LPV) systems without assuming that the vector of scheduling parameters is available for measurements. Efficiency of the proposed approach is demonstrated through a numerical example. © 2012 Lavoisier.
引用
收藏
页码:335 / 348
页数:13
相关论文
共 20 条
[1]  
Astolfi A., Karagiannis D., Ortega R., Non-linear and Adaptive Control with Applica-tions, (2008)
[2]  
Bernard O., Gouze J.L., Closed loop observers bundle for uncertain biotechnological models, Journal of Process Control, 14, pp. 765-774, (2004)
[3]  
Daafouz J., Bernussou J., Geromel J.C., On inexact lpv control of continuous-time polytopic systems, IEEE Trans. Autom. Control, 53, 7, pp. 1674-1678, (2008)
[4]  
Gouze J.L., Rapaport A., Hadj-Sadok M.Z., Interval observers for uncertain biological systems, Ecological Modelling, 133, pp. 46-56, (2000)
[5]  
Hecker S., Varga A., Generalized lft-based representation of parametric uncertain mo-dels, European Journal of Control, 10, 4, pp. 326-337, (2004)
[6]  
Isidori A., Nonlinearcontrol Systems, (1995)
[7]  
Jetto L., Orsini V., Efficient lmi-based quadratic stabilization of interval lpv systems with noisy parameter measures, IEEE Trans. Autom. Control, 55, 4, pp. 993-998, (2010)
[8]  
Khalil H., Nonlinear Systems, (2002)
[9]  
Kreisselmeier G., Engel R., Nonlinear observers for autonomous lipschitz continuous systems, IEEE Trans. Automat Contr., 48, 3, pp. 397-401, (2003)
[10]  
Lee L., Identificationandrobustcontroloflinearparameter-varyingsystems, (1997)