Super-resolution electrohydrodynamic (EHD) 3D printing of micro-structures using phase-change inks

被引:58
作者
Han, Yiwei [1 ]
Wei, Chuang [1 ]
Dong, Jingyan [1 ]
机构
[1] Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, 27695-7906, NC
基金
美国国家科学基金会;
关键词
3D micro-structure printing; Electrohydrodynamic 3D Printing; Phase-Change Ink;
D O I
10.1016/j.mfglet.2014.07.005
中图分类号
学科分类号
摘要
This paper presents a super-resolution 3D printing process using electrohydrodynamic (EHD) printing technology for the direct fabrication of micro-scale structures with phase-change inks (i.e. wax). In this work, we successfully apply EHD printing process for phase-change ink (wax), which is widely used modeling and supporting material for additive manufacturing and 3D printing, to achieve micro-scale droplet dimension. Moreover, a Finite Element Analysis (FEA) model is developed to predict the droplet formation and droplet size of the EHD printing at different printing voltage. The EHD printing process is capable of producing high aspect-of-ratio 3D structures with sub-10. μm feature resolution. © 2014 Society of Manufacturing Engineers (SME).
引用
收藏
页码:96 / 99
页数:3
相关论文
共 14 条
[1]  
Gibson I., Rosen D.W., Stucker B., Additive manufacturing technologies: rapid prototyping to direct digital manufacturing, (2009)
[2]  
Kruth J.-P., Leu M.C., Nakagawa T., Progress in additive manufacturing and rapid prototyping, CIRP Ann Manuf Technol, 47, 2, pp. 525-540, (1998)
[3]  
Melchels F.P.W., Domingos M.A.N., Klein T.J., Malda J., Bartolo P.J., Hutmacher D.W., Additive manufacturing of tissues and organs, Prog Polym Sci, 37, 8, pp. 1079-1104, (2012)
[4]  
Beaman J., Marcus H.L., Bourell D.L., Barlow J.W., Crawford R.H., McAlea K.P., Solid freeform fabrication: a new direction in manufacturing, (1997)
[5]  
Hutmacher D.W., Sittinger M., Risbud M.V., Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnol, 22, 7, pp. 354-362, (2004)
[6]  
Tan J., Saltzman W.M., Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry, Biomaterials, 23, 15, pp. 3215-3225, (2002)
[7]  
Wang K., Cai L., Zhang L., Dong J., Wang S., Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior, Adv Healthcare Mater, 1, 3, pp. 292-301, (2012)
[8]  
Park J.-U., Hardy M., Kang S.J., Barton K., Adair K., Mukhopadhyay D.K., Et al., High-resolution electrohydrodynamic jet printing, Nat Mater, 6, 10, pp. 782-789, (2007)
[9]  
Mishra S., Barton K.L., Alleyne A.G., Ferreira P.M., Rogers J.A., High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet, J Micromech Microeng, 20, 9, (2010)
[10]  
Poellmann M.J., Barton K.L., Mishra S., Johnson A.J.W., Patterned hydrogel substrates for cell culture with electrohydrodynamic jet printing, Macromol Biosci, 11, 9, pp. 1164-1168, (2011)