Thermal conductivity analysis of the complex oxides composed of alkali or alkaline-earth metals and molybdenum

被引:4
作者
Kurosaki K. [1 ]
Tanaka K. [2 ]
Osaka M. [2 ]
Tokushima K. [1 ]
Gima H. [1 ]
Muta H. [3 ]
Masayoshi U.N.O. [1 ,3 ]
Yamanaka S. [1 ,2 ,3 ]
机构
[1] Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita-shi, Osaka 565-0871
[2] Japan Atomic Energy Agency, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393
[3] Research Institute of Nuclear Engineering, Fukui University, Fukui-shi, Fukui 910-8507
关键词
Alkali metal; Alkaline-earth metal; Bamoo[!sub]3[!/sub; Bamoo[!sub]4[!/sub; Cs[!sub]2[!/sub]moo[!sub]4[!/sub; Fission product; Molybdenum; Srmoo[!sub]3[!/sub; Srmoo[!sub]4[!/sub; Thermal conductivity;
D O I
10.3327/taesj.J09.001
中图分类号
学科分类号
摘要
It is important to understand the behavior of fission products (FPs) for the evaluation of fuel performance. For example, in high-burnup oxide fuels, some FPs dissolve in the fuel matrix and others form oxide or metallic inclusions, which would affect the physical and chemical properties of the fuels. Here, we investigated the thermal conductivity (λ) of oxide inclusions; in particular, we focused on Cs-Mo-O and (Sr or Ba)-Mo-O ternary systems. The λ value of Cs2MoO4 is quite low (around 0.6 Wm-1 K-1 at 300 K) compared with that of UO2 (around 8.5 Wm-1 K-1 at 300 K). In addition, we found that the λ value of (Sr or Ba)MoO3 is approximately 10 times higher than that of (Sr or Ba)MoO4. This high λ value of (Sr or Ba) MoO3 is due to not only a high electronic contribution but also an intrinsically high lattice thermal conductivity λlat) · This high λlat could be explained using the general lattice thermal conductivity theory; that is, a strong interatomic bonding within a simple crystal structure is realized in (Sr or Ba)MoO3, leading to an exceptionally high λlat compared with that of (Sr or Ba)MoO4. © Atomic Energy Society of Japan.
引用
收藏
页码:21 / 28
页数:7
相关论文
共 24 条
[1]  
The Nuclear Fuel of Pressurized Water Reactors and Fast Reactors Design and Behaviour, 85, (1999)
[2]  
Kleykamp H., The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 131, pp. 221-246, (1985)
[3]  
Kleykamp H., Paschoal J.O., Pejsab R., Et al., Composition and structure of fission product precipitates in irradiated oxide fuels: Correlation with phase studies in the Mo-Ru-RhPd and BaO-UO <sub>2</sub>-ZrO<sub>2</sub>-MoO<sub>2</sub> Systems, J. Nucl. Mater., 130, pp. 426-433, (1985)
[4]  
Kurosaki K., Ohshima R., Uno M., Et al., Thermal conductivity of (U, Ce)O<sub>2</sub> with and without Nd or Zr, J. Nucl. Mater., 294, pp. 193-197, (2001)
[5]  
Yamanaka S., Yoshida S., Kurosaki K., Et al., Mechanical properties of (U, Ce) O<sub>2</sub> with and without Nd or Zr, J. Alloys Compd., 327, pp. 281-284, (2001)
[6]  
Kurosaki K., Tanaka K., Osaka M., Et al., Effect of Nd and Pr addition on the thermal and mechanical properties of (U, Ce) O<sub>2</sub>, J. Nucl. Mater., 389, pp. 85-88, (2009)
[7]  
Fukushima S., Ohmichi T., Maeda A., Et al., Thermal conductivity of near-stoichiometric (U, Pu, Nd)O<sub>2</sub> and (U, Pu, Eu)O2 solid solutions, J. Nucl. Mater., 116, pp. 287-296, (1983)
[8]  
Fukushima S., Ohmichi T., Maeda A., Et al., Thermal conductivity of near-stoichiometric (U, Nd) O<sub>2</sub>, (U, Sm) O<sub>2</sub> and (U, Eu)O2 solid solutions, J. Nucl. Mater., 114, pp. 312-325, (1983)
[9]  
Yamanaka S., Kurosaki K., Maekawa T., Et al., Thermochemical and thermophysical properties of alkaline-earth perovskites, J. Nucl. Mater., 344, pp. 61-66, (2005)
[10]  
Maekawa T., Kurosaki K., Muta H., Et al., Thermal and electrical properties of perovskite-type strontium molybdate, J. Alloys Compd., 390, pp. 314-317, (2005)