A Flexible Phosphonate Metal-Organic Framework for Enhanced Cooperative Ammonia Capture

被引:2
作者
Jayasinghe, Dukula De Alwis [1 ]
Chen, Yinlin [1 ]
Li, Jiangnan [2 ]
Rogacka, Justyna M. [1 ,3 ]
Kippax-Jones, Meredydd [1 ,4 ]
Lu, Wanpeng [1 ]
Sapchenko, Sergei [1 ]
Yang, Jinyue [1 ]
Chansai, Sarayute [5 ]
Zhou, Tianze [1 ]
Guo, Lixia [2 ]
Ma, Yujie [1 ]
Dong, Longzhang [1 ]
Polyukhov, Daniil [1 ]
Shan, Lutong [1 ]
Han, Yu [1 ]
Crawshaw, Danielle [1 ]
Zeng, Xiangdi [1 ]
Zhu, Zhaodong [1 ]
Hughes, Lewis [6 ]
Frogley, Mark D. [4 ]
Manuel, Pascal [7 ]
Rudic, Svemir [7 ]
Cheng, Yongqiang [8 ]
Hardacre, Christopher [5 ]
Schroeder, Martin [1 ]
Yang, Sihai [1 ,2 ]
机构
[1] Univ Manchester, Dept Chem, Manchester M13 9PL, Lancs, England
[2] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[3] Wroclaw Univ Sci & Technol, Fac Chem, Dept Micro Nano & Bioproc Engn, PL-50370 Wroclaw, Poland
[4] Diamond Light Source, Didcot OX11 0DE, Oxon, England
[5] Univ Manchester, Dept Chem Engn, Manchester M13 9PL, Lancs, England
[6] Univ Manchester, Dept Earth & Environm Sci, Manchester M13 9PL, Lancs, England
[7] Rutherford Appleton Lab, ISIS Neutron & Muon Facil, Didcot OX11 0QX, Oxon, England
[8] Oak Ridge Natl Lab, Neutron Sci Directorate, Neutron Scattering Div, Oak Ridge, TN 37831 USA
基金
欧盟地平线“2020”; 欧洲研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
ADSORPTION; ABSORPTION; STORAGE; NH3;
D O I
10.1021/jacs.4c12430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal-organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100-220 degrees C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g-1 at 100 mu bar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
引用
收藏
页码:32040 / 32048
页数:9
相关论文
共 50 条
  • [41] A Molecular Insight into the Dehydration of a Metal-Organic Framework and its Impact on the CO2 Capture
    Lian, Jian Xiang
    Siahrostami, Samira
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (18)
  • [42] Application of the piperazine-grafted CuBTTri metal-organic framework in postcombustion carbon dioxide capture
    Das, Anita
    Choucair, Mohammad
    Southon, Peter D.
    Mason, Jarad A.
    Zhao, Ming
    Kepert, Cameron J.
    Harris, Andrew T.
    D'Alessandro, Deanna M.
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 174 : 74 - 80
  • [43] One-dimensional alignment of defects in a flexible metal-organic framework
    Fu, Yao
    Forse, Alexander C.
    Kang, Zhengzhong
    Cliffe, Matthew J.
    Cao, Weicheng
    Yin, Jinglin
    Gao, Lina
    Pang, Zhenfeng
    He, Tian
    Chen, Qinlong
    Wang, Qi
    Long, Jeffrey R.
    Reimer, Jeffrey A.
    Kong, Xueqian
    [J]. SCIENCE ADVANCES, 2023, 9 (06)
  • [44] Role of hydrocarbons in pore expansion and contraction of a flexible metal-organic framework
    Motkuri, Radha Kishan
    Thallapally, Praveen K.
    Nune, Satish K.
    Fernandez, Carlos A.
    McGrail, B. Peter
    Atwood, Jerry L.
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (25) : 7077 - 7079
  • [45] Construction of flexible metal-organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture
    Park, Jeehyun
    Oh, Moonhyun
    [J]. NANOSCALE, 2017, 9 (35) : 12850 - 12854
  • [46] Advancing Metal-Organic Frameworks toward Smart Sensing: Enhanced Fluorescence by a Photonic Metal-Organic Framework for Organic Vapor Sensing
    Olorunyomi, Joseph F.
    Sadiq, Muhammad M.
    Batten, Michael
    Konstas, Kristina
    Chen, Dehong
    Doherty, Cara M.
    Caruso, Rachel A.
    [J]. ADVANCED OPTICAL MATERIALS, 2020, 8 (19)
  • [47] Functionalization of Metal-Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions
    Andirova, Dinara
    Lei, Yu
    Zhao, Xiaodan
    Choi, Sunho
    [J]. CHEMSUSCHEM, 2015, 8 (20) : 3405 - 3409
  • [48] Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks
    Guo, Lixia
    Hurd, Joseph
    He, Meng
    Lu, Wanpeng
    Li, Jiangnan
    Crawshaw, Danielle
    Fan, Mengtian
    Sapchenko, Sergei
    Chen, Yinlin
    Zeng, Xiangdi
    Kippax-Jones, Meredydd
    Huang, Wenyuan
    Zhu, Zhaodong
    Manuel, Pascal
    Frogley, Mark D.
    Lee, Daniel
    Schroeder, Martin
    Yang, Sihai
    [J]. COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
  • [49] Ammonia Capture within Isoreticular Metal-Organic Frameworks with Rod Secondary Building Units
    Moribe, Shinya
    Chen, Zhijie
    Alayoglu, Selim
    Syed, Zoha H.
    Islamoglu, Timur
    Farha, Omar K.
    [J]. ACS MATERIALS LETTERS, 2019, 1 (04): : 476 - 480
  • [50] Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation
    Liu, Jian
    Chen, Zhijie
    Wang, Rui
    Alayoglu, Selim
    Islamoglu, Timur
    Lee, Seung-Joon
    Sheridan, Thomas R.
    Chen, Haoyuan
    Snurr, Randall Q.
    Farha, Omar K.
    Hupp, Joseph T.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) : 22485 - 22494