A Flexible Phosphonate Metal-Organic Framework for Enhanced Cooperative Ammonia Capture

被引:2
作者
Jayasinghe, Dukula De Alwis [1 ]
Chen, Yinlin [1 ]
Li, Jiangnan [2 ]
Rogacka, Justyna M. [1 ,3 ]
Kippax-Jones, Meredydd [1 ,4 ]
Lu, Wanpeng [1 ]
Sapchenko, Sergei [1 ]
Yang, Jinyue [1 ]
Chansai, Sarayute [5 ]
Zhou, Tianze [1 ]
Guo, Lixia [2 ]
Ma, Yujie [1 ]
Dong, Longzhang [1 ]
Polyukhov, Daniil [1 ]
Shan, Lutong [1 ]
Han, Yu [1 ]
Crawshaw, Danielle [1 ]
Zeng, Xiangdi [1 ]
Zhu, Zhaodong [1 ]
Hughes, Lewis [6 ]
Frogley, Mark D. [4 ]
Manuel, Pascal [7 ]
Rudic, Svemir [7 ]
Cheng, Yongqiang [8 ]
Hardacre, Christopher [5 ]
Schroeder, Martin [1 ]
Yang, Sihai [1 ,2 ]
机构
[1] Univ Manchester, Dept Chem, Manchester M13 9PL, Lancs, England
[2] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[3] Wroclaw Univ Sci & Technol, Fac Chem, Dept Micro Nano & Bioproc Engn, PL-50370 Wroclaw, Poland
[4] Diamond Light Source, Didcot OX11 0DE, Oxon, England
[5] Univ Manchester, Dept Chem Engn, Manchester M13 9PL, Lancs, England
[6] Univ Manchester, Dept Earth & Environm Sci, Manchester M13 9PL, Lancs, England
[7] Rutherford Appleton Lab, ISIS Neutron & Muon Facil, Didcot OX11 0QX, Oxon, England
[8] Oak Ridge Natl Lab, Neutron Sci Directorate, Neutron Scattering Div, Oak Ridge, TN 37831 USA
基金
欧盟地平线“2020”; 欧洲研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
ADSORPTION; ABSORPTION; STORAGE; NH3;
D O I
10.1021/jacs.4c12430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal-organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100-220 degrees C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g-1 at 100 mu bar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
引用
收藏
页码:32040 / 32048
页数:9
相关论文
共 50 条
  • [31] Design of a Humidity-Stable Metal-Organic Framework Using a Phosphonate Monoester Ligand
    Gelfand, Benjamin S.
    Lin, Jian-Bin
    Shimizu, George K. H.
    INORGANIC CHEMISTRY, 2015, 54 (04) : 1185 - 1187
  • [32] Metal-organic framework hybrid adsorbents for carbon capture-A review
    Gebremariam, Solomon K.
    Dumee, Ludovic F.
    Llewellyn, Philip L.
    AlWahedi, Yasser Fowad
    Karanikolos, Georgios N.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [33] A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture
    Lin, Jian-Bin
    Nguyen, Tai T. T.
    Vaidhyanathan, Ramanathan
    Burner, Jake
    Taylor, Jared M.
    Durekova, Hana
    Akhtar, Farid
    Mah, Roger K.
    Ghaffari-Nik, Omid
    Marx, Stefan
    Fylstra, Nicholas
    Iremonger, Simon S.
    Dawson, Karl W.
    Sarkar, Partha
    Hovington, Pierre
    Rajendran, Arvind
    Woo, Tom K.
    Shimizu, George K. H.
    SCIENCE, 2021, 374 (6574) : 1464 - +
  • [34] Suitability of a diamine functionalized metal-organic framework for direct air capture
    Bose, Saptasree
    Sengupta, Debabrata
    Malliakas, Christos D.
    Idrees, Karam B.
    Xie, Haomiao
    Wang, Xiaoliang
    Barsoum, Michael L.
    Barker, Nathaniel M.
    Dravid, Vinayak P.
    Islamoglu, Timur
    Farha, Omar K.
    CHEMICAL SCIENCE, 2023, 14 (35) : 9380 - 9388
  • [35] Deposition of Imidazole into Mesoporous Zirconium Metal-Organic Framework for Iodine Capture
    Liu, Yicen
    Tan, Chuan
    Li, Xiaolei
    Jia, Yuyu
    Zhu, Lin
    Li, Zhenyu
    Liu, Wei
    INORGANIC CHEMISTRY, 2024, 63 (45) : 21541 - 21547
  • [36] Bioinspired Metal-Organic Framework for Trace CO2 Capture
    Bien, Caitlin E.
    Chen, Kai K.
    Chien, Szu-Chia
    Reiner, Benjamin R.
    Lin, Li-Chiang
    Wade, Casey R.
    Ho, W. S. Winston
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (40) : 12662 - 12666
  • [37] Rational Design of a Uranyl Metal-Organic Framework for the Capture and Colorimetric Detection of Organic Dyes
    Surbella, Robert G., III
    Carter, Korey P.
    Lohrey, Trevor D.
    Reilly, Dallas
    Kalaj, Mark
    McNamara, Bruce K.
    Schwantes, Jon
    Abergel, Rebecca J.
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (61) : 13819 - 13825
  • [38] A highly porous metal-organic framework for large organic molecule capture and chromatographic separation
    Li, Pei-Zhou
    Su, Jie
    Liang, Jie
    Liu, Jia
    Zhang, Yuanyuan
    Chena, Hongzhong
    Zhao, Yanli
    CHEMICAL COMMUNICATIONS, 2017, 53 (24) : 3434 - 3437
  • [39] High ammonia storage capacity in LiCl nanoparticle-embedded metal-organic framework composites
    Kim, Hyojin
    Choe, Jong Hyeak
    Yun, Hongryeol
    Kurisigal, Jintu Francis
    Yu, Sumin
    Lee, Yong Hoon
    Lee, Jung-Hoon
    Hong, Chang Seop
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [40] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096