Influence of ultrasonic surface rolling on fatigue performance of high carbon low alloy quenching-partitioning-tempering steel

被引:2
作者
Qin, Shengwei [1 ,2 ,3 ]
Wang, Guangrui [1 ,2 ,3 ]
Tian, Qihui [1 ,2 ,3 ]
Liu, Zhihua [1 ,2 ,3 ]
Zhao, Minghao [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Prov Ind Sci & Technol Inst Antifatigue Mfg, Zhengzhou 450016, Henan, Peoples R China
[3] Henan Prov Engn Res Ctr Antifatigue Mfg Technol, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultrasonic rolling; Fatigue; Gradient structure; Retained austenite; RETAINED AUSTENITE; BEHAVIOR; MICROSTRUCTURE; DUCTILITY; CERAMICS; METALS;
D O I
10.1016/j.ijfatigue.2024.108734
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In order to expand the application scope of the quenching-partitioning-tempering (Q-P-T) steel in the industrial field, ultrasonic rolling treatment (USRP) is carried out, and the influence of USRP on the fatigue properties of the Q-P-T steel is elucidated. Compared with the Q-P-T specimen (580 MPa), the fatigue limit of the USRP3 specimen increases to 620 MPa, and the crack initiation location is transferred from the surface to the core. The primary reasons for this fatigue strength incensement are as follows: a higher surface hardness effectively inhibits surface fatigue crack initiation; residual compressive stress reduces the driving force at crack tips and impedes crack propagation. Moreover, there is a continuous increase in hardness for the USRP3 specimen during cyclic loading due to dominant phase transformation strengthening effect caused by transformation from austenite to martensite. On the other hand, the USRP6 specimen possesses a gradient grain size structure with higher hardness and deeper range, which can decelerate crack propagation rate. However, surface damage caused by excessive ultrasonic rolling as well as the cyclic softening effect of the surface during fatigue ultimately counterbalance the positive influence of surface strengthening on fatigue properties.
引用
收藏
页数:13
相关论文
共 43 条
[11]   Ultrasonic Surface Rolling Process: Properties, Characterization, and Applications [J].
John, Merbin ;
Ralls, Alessandro M. ;
Dooley, Scott C. ;
Thazhathidathil, Akhil Kishore Vellooridathil ;
Perka, Ashok Kumar ;
Kuruveri, Udaya Bhat ;
Menezes, Pradeep L. .
APPLIED SCIENCES-BASEL, 2021, 11 (22)
[12]   The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel [J].
Li, D. ;
Chen, H. N. ;
Xu, H. .
APPLIED SURFACE SCIENCE, 2009, 255 (06) :3811-3816
[13]   Effects of ultrasonic rolling on the surface integrity of in-situ TiB2/2024Al composite [J].
Li, Yugang ;
Lian, Guohui ;
Geng, Jiwei ;
Song, Cunfeng ;
Chen, Dong ;
Wang, Haowei .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 293 (293)
[14]   Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process [J].
Liu, Chengsong ;
Liu, Daoxin ;
Zhang, Xiaohua ;
Liu, Dan ;
Ma, Amin ;
Ao, Ni ;
Xu, Xingchen .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) :1555-1562
[15]   An investigation of fretting fatigue behavior and mechanism in 17-4PH stainless steel with gradient structure produced by an ultrasonic surface rolling process [J].
Liu, Dan ;
Liu, Daoxin ;
Zhang, Xiaohua ;
Liu, Chengsong ;
Ma, Amin ;
Xu, Xingchen ;
Zhang, Wencang .
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 131
[16]  
Liu H., 2021, Study on shot peening and characterization of GW83 magnesium alloy
[17]   Microstructure evolution and residual stress distribution of nanostructured Mg-8Gd-3Y alloy induced by severe shot peening [J].
Liu, Huabing ;
Zhu, Wenlong ;
Jiang, Chuanhai ;
Guagliano, Mario ;
Xing, Shilong ;
Wang, Lianbo ;
Ji, Vincent ;
Zhan, Ke .
SURFACE & COATINGS TECHNOLOGY, 2020, 404
[18]   Improved fatigue resistance of gradient nanograined Cu [J].
Long, Jianzhou ;
Pan, Qingsong ;
Tao, Nairong ;
Dao, Ming ;
Suresh, Subra ;
Lu, Lei .
ACTA MATERIALIA, 2019, 166 :56-66
[19]   Making strong nanomaterials ductile with gradients [J].
Lu, K. .
SCIENCE, 2014, 345 (6203) :1455-1456
[20]  
Lu K, 2015, ACTA METALL SIN, V51, P1