On Global and Decay Solution of Viscous Compressible MHD Equations

被引:0
作者
Benabidallah, Rachid [1 ]
Ebobisse, Francois [2 ]
Azouz, Mohamed [3 ]
机构
[1] Univ M Mammeri, Dept Math, Tizi Ouzou, Algeria
[2] Univ Cape Town, Dept Math & Appl Math, Cape Town, South Africa
[3] Univ M Mammeri, Fac Sci, Lab Math Pures & Appl LMPA, Tizi Ouzou, Algeria
关键词
compressible flows; existence problems; magnetic field; magnetohydrodynamic equations; stability; MAGNETOHYDRODYNAMIC EQUATIONS; CONTINUOUS DEPENDENCE; CLASSICAL-SOLUTIONS; WEAK SOLUTIONS; INITIAL DATA; STABILITY; EXISTENCE; LIMIT; MOTION; RATES;
D O I
10.1111/sapm.12794
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider in an infinite horizontal layer, the equations of the viscous compressible magnetohydrodynamic flows subject to the gravitational force. On the upper and lower planes of the layer, we consider homogeneous Dirichlet conditions on the velocity while a large constant vector field is prescribed on the magnetic field. The existence of the global strong solution with small initial data and its asymptotic behavior as time goes to infinity are established.
引用
收藏
页数:21
相关论文
共 54 条
[41]  
Padula M., 2014, Asymptotic Stability of Stead Compressible Fluids, Lecture Notes in Mathematics
[42]   Stability and Decay to Zero of the L2-Norms of Perturbations to a Viscous Compressible Heat Conductive Fluid Motion Exterior to a Ball [J].
Padula, Mariarosaria ;
Pokorny, Milan .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :342-357
[43]  
Polovin R.V., 1990, Fundamentals of Magnetohydrodynamics, V1st
[44]   Vanishing Shear Viscosity and Boundary Layer for the Navier-Stokes Equations with Cylindrical Symmetry [J].
Qin, Xulong ;
Yang, Tong ;
Yao, Zheng-an ;
Zhou, Wenshu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (03) :1049-1086
[45]   SOME MATHEMATICAL QUESTIONS RELATED TO THE MHD EQUATIONS [J].
SERMANGE, M ;
TEMAM, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (05) :635-664
[46]   Optimal decay rates of the compressible magnetohydrodynamic equations [J].
Tan, Zhong ;
Wang, Huaqiao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :188-201
[47]  
Umeda T., 1984, Jpn. J. Appl. Math., V1, P435
[48]   ON THE EXISTENCE OF STATIONARY SOLUTIONS TO COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
VALLI, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1987, 4 (01) :99-113
[49]  
VOLPERT AI, 1972, MAT SBORNIK, V87
[50]   Large solutions to the initial-boundary value problem for planar magnetohydrodynamics [J].
Wang, DH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (04) :1424-1441