HADT: Image super-resolution restoration using Hybrid Attention-Dense Connected Transformer Networks

被引:0
|
作者
Guo, Ying [1 ,2 ]
Tian, Chang [1 ]
Liu, Jie [1 ]
Di, Chong [3 ]
Ning, Keqing [1 ]
机构
[1] North China Univ Technol, Beijing 100041, Peoples R China
[2] Tsinghua Univ, Beijing 100084, Peoples R China
[3] Qilu Univ Technol, Shandong Artificial Intelligence Inst, Shandong Acad Sci, Jinan 250353, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid attention transformer; Image super-resolution; Dense connection transformer;
D O I
10.1016/j.neucom.2024.128790
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image super-resolution (SR) plays a vital role in vision tasks, in which Transformer-based methods outperform conventional convolutional neural networks. Existing work usually uses residual linking to improve the performance, but this type of linking provides limited information transfer within the block. Also, existing work usually restricts the self-attention computation to a single window to improve feature extraction. This means transformer-based networks can only use feature information within a limited spatial range. To handle the challenge, this paper proposes a novel Hybrid Attention-Dense Connected Transformer Network (HADT) to utilize the potential feature information better. HADT is constructed by stacking an attentional transformer block (ATB), which contains an Effective Dense Transformer Block (EDTB) and a Hybrid Attention Block (HAB). EDTB combines dense connectivity and swin-transformer to enhance feature transfer and improve model representation, and meanwhile, HAB is used for cross-window information interaction and joint modeling of features for better visualization. Based on the experiments, our method is effective on SR tasks with magnification factors of 2, 3, and 4. For example, using the Urban100 dataset in an experiment with an amplification factor of 4 our method has a PSNR value that is 0.15 dB higher than the previous method and reconstructs amore detailed texture.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] HCT: image super-resolution restoration using hierarchical convolution transformer networks
    Guo, Ying
    Tian, Chang
    Wang, Han
    Liu, Jie
    Di, Chong
    Ning, Keqing
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [2] Dense Hybrid Attention Network for Palmprint Image Super-Resolution
    Wang, Yao
    Fei, Lunke
    Zhao, Shuping
    Zhu, Qi
    Wen, Jie
    Jia, Wei
    Rida, Imad
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (04): : 2590 - 2602
  • [3] A Lightweight Dense Connected Approach with Attention on Single Image Super-Resolution
    Zha, Lei
    Yang, Yu
    Lai, Zicheng
    Zhang, Ziwei
    Wen, Juan
    ELECTRONICS, 2021, 10 (11)
  • [4] Pyramidal dense attention networks for single image super-resolution
    Wu, Huapeng
    Gui, Jie
    Zhang, Jun
    Kwok, James T.
    Wei, Zhihui
    IET IMAGE PROCESSING, 2022, 16 (12) : 3247 - 3257
  • [5] Image super-resolution using dilated neighborhood attention transformer
    Chen, Li
    Zuo, Jinnian
    Du, Kai
    Zou, Jinsong
    Yin, Shaoyun
    Wang, Jinyu
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [6] Image super-resolution reconstruction using Swin Transformer with efficient channel attention networks
    Sun, Zhenxi
    Zhang, Jin
    Chen, Ziyi
    Hong, Lu
    Zhang, Rui
    Li, Weishi
    Xia, Haojie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [7] Single Image Super-resolution Using Spatial Transformer Networks
    Wang, Qiang
    Fan, Huijie
    Cong, Yang
    Tang, Yandong
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 564 - 567
  • [8] Densely Connected Transformer With Linear Self-Attention for Lightweight Image Super-Resolution
    Zeng, Kun
    Lin, Hanjiang
    Yan, Zhiqiang
    Fang, Jinsheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] EHAT:Enhanced Hybrid Attention Transformer for Remote Sensing Image Super-Resolution
    Wang, Jian
    Xie, Zexin
    Du, Yanlin
    Song, Wei
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 225 - 237
  • [10] Hybrid-Domain Attention Dense Network for Efficient Image Super-Resolution
    He, Yanyi
    He, Jinhong
    Xue, Minglong
    Zhong, Senming
    Zhou, Mingliang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2025,