共 22 条
- [11] Sumedha, Krishnamurthy S., Sahoo S., Balanced K-satisfiability and biased random K-satisfiability on trees, Physical Review E, 87, 4, (2013)
- [12] Krishnamurthy S., Sumedha, Exact satisfiability threshold for k-satisfiability problems on a Bethe lattice, Physical Review E, 92, 4, (2015)
- [13] Rathi V., Aurell E., Rasmussen L.K., Skoglund M., Bounds on threshold of regular random k-SAT, Lecture Notes in Computer Science, 6175, pp. 264-277, (2010)
- [14] Zhou J.C., Xu D.Y., Lu Y.J., Satisfiability threshold of the regular random (k, r)-SAT problem, Ruan Jian Xue Bao/Journal of Software, 27, 12, pp. 2985-2993, (2016)
- [15] Zhou J.C., Xu D.Y., Lu Y.J., Satisfiability threshold of regular (k, r)-SAT problem via 1RSB theory, Journal of Huazhong University of Science and Technology, 45, 12, pp. 7-13, (2017)
- [16] Kratochvil J., Savicky P., Tuza Z., One more occurrence of variables makes satisfiability jump from trivial to NP-complete, SIAM Journal on Computing, 22, 1, pp. 203-210, (1993)
- [17] Hoory S., Szeider S., Computing unsatisfiable k-SAT instances with few occurrences per variable, Theoretical Computer Science, 337, 1, pp. 347-359, (2005)
- [18] Savicky P., Sgall J., DNF tautologies with a limited number of occurrences of every variable, Theoretical Computer Science, 238, 1, pp. 495-498, (2000)
- [19] Gebauer H., Szabo T., Tardos G., The Local Lemma is asymptotically tight for SAT, Journal of the ACM, 63, 5, pp. 664-674, (2016)
- [20] Hoory S., Szeider S., A note on unsatisfiable k-CNF formulas with few occurrences per variable, Society for Industrial and Applied Mathematics, pp. 523-528, (2006)