Nature of Disordering in γ-Ga2O3

被引:4
|
作者
Huang, Qiu-Shi [1 ,2 ]
Li, Chuan-Nan [3 ]
Hao, Mao-Sheng [4 ]
Liang, Han-Pu [1 ,2 ]
Cai, Xuefen [5 ]
Yue, Ying [1 ]
Kuznetsov, Andrej [6 ]
Zhang, Xie [7 ]
Wei, Su-Huai [2 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Eastern Inst Technol, Ningbo 315200, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[4] TU Wien, Inst Theoret Phys, A-1040 Vienna, Austria
[5] Shenzhen Univ, Coll Phys & Optoelect Engn, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[6] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, POB 1048 Blindern, N-0316 Oslo, Norway
[7] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS;
D O I
10.1103/PhysRevLett.133.226101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Polymorphs commonly exist for various materials, enabling phase engineering for diverse material properties. While the crystal structures of different polymorphs can, in principle, be experimentally characterized, interpreting and understanding complex crystal structures can be very challenging. Using Ga2O3 as a prototype, here we show that the crystal structure of gamma-Ga2O3 has long been misinterpreted from either theory or experiment. By lattice mapping based crystallographic analysis and combinatorial crystal structure search, we reveal the nature of gamma-Ga2O3 as a disordered form of /3-Ga2O3, which is further confirmed by Monte Carlo simulations of the order-disorder transition. Our insights are critical for correct interpretation and characterization of gamma-Ga2O3, and the established physics is expected to be widely applicable to a variety of polymorphic systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Ga2O3/GaN/蓝宝石模板上β-Ga2O3薄膜的生长
    焦腾
    李赜明
    王谦
    董鑫
    张源涛
    柏松
    张宝林
    杜国同
    发光学报, 2020, 41 (03) : 281 - 287
  • [42] Synthesis and characteristics of pure β-Ga2O3 and Tb3+ doped β-Ga2O3 hollow nanostructures
    Kang, Bong Kyun
    Mang, Sung Ryul
    Go, Da Hyeon
    Yoon, Dae Ho
    MATERIALS LETTERS, 2013, 111 : 67 - 70
  • [43] Structure of Ga2O3(ZnO)6:: a member of the homologous series Ga2O3(ZnO)m
    Michiue, Yuichi
    Kimizuka, Noboru
    Kanke, Yasushi
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2008, 64 : 521 - 526
  • [44] Growth of ε-Ga2O3 film and fabrication of high quality β-Ga2O3 films by phase transition
    Lee, Hansol
    Kim, Soyoon
    Lee, Jungbok
    Ahn, Hyungsoo
    Kim, Kyounghwa
    Yang, Min
    JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, 2021, 31 (01): : 1 - 7
  • [45] Improvement of Ga2O3 vertical Schottky barrier diode by constructing NiO/Ga2O3 heterojunction
    Ji, Xueqiang
    Wang, Jinjin
    Qi, Song
    Liang, Yijie
    Hu, Shengrun
    Zheng, Haochen
    Zhang, Sai
    Yue, Jianying
    Qi, Xiaohui
    Li, Shan
    Liu, Zeng
    Shu, Lei
    Tang, Weihua
    Li, Peigang
    JOURNAL OF SEMICONDUCTORS, 2024, 45 (04)
  • [46] Growth of β-Ga2O3 nanorods by ammoniating Ga2O3/V thin films on Si substrate
    王公堂
    薛成山
    杨兆柱
    ChinesePhysicsB, 2008, 17 (04) : 1326 - 1330
  • [47] Growth of β-Ga2O3 nanorods by ammoniating Ga2O3/V thin films on Si substrate
    Wang Gong-Tang
    Xue Cheng-Shan
    Yang Zhao-Zhu
    CHINESE PHYSICS B, 2008, 17 (04) : 1326 - 1330
  • [48] Growth of β-Ga2O3 nanorods by ammoniating Ga2O3/V thin films on Si substrate
    College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
    Chin. Phys., 2008, 4 (1326-1330):
  • [49] Metal oxide catalysts for DME steam reforming: Ga2O3 and Ga2O3–Al2O3 catalysts
    Thomas Mathew
    Yusuke Yamada
    Atsushi Ueda
    Hiroshi Shioyama
    Tetsuhiko Kobayashi
    Catalysis Letters, 2005, 100 : 247 - 253
  • [50] Effect of Ga2O3 seed layer on microstructure and properties of Ga2O3:Ta nanocrystalline film
    Huang, Haofei
    Zhang, Lei
    Gu, Keyun
    Qian, Zhichao
    Shang, Yi
    Zhang, Zilong
    Huang, Jian
    Tang, Ke
    Wang, Linjun
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 165