Hankel operators for fractional-order systems

被引:0
作者
Department of Electrical and Computer Engineering, University of Akron, Akron, OH 44325-3904, United States [1 ]
机构
[1] Department of Electrical and Computer Engineering, University of Akron, Akron
来源
J. Eur. Syst. Autom. | 2008年 / 6-8卷 / 701-713期
关键词
Fractional calculus; Fractional-order systems; Hankel operators; Initialization; Integral equations;
D O I
10.3166/JESA.42.701-713
中图分类号
学科分类号
摘要
This paper applies the theory of a Hankel operators to fractional-order systems. It is shown that the Hankel operator approach to fractional-order systems inherently accounts for the difficulty in the initializion problem for fractional-order differential equations. The integralequation approach also verifies that the range of the Hankel operator is infinite dimensional, so a finite number of initial conditions is insufficient to account for the effect of the past behaviour on the future output of the fractional-order system. © 2008 Lavoisier, Paris.
引用
收藏
页码:701 / 713
页数:12
相关论文
共 50 条
[21]   INITIALIZATION ENERGY IN FRACTIONAL-ORDER SYSTEMS [J].
Hartley, Tom T. ;
Trigeassou, Jean-Claude ;
Lorenzo, Carl F. ;
Maamri, Nezha .
INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 9, 2016,
[22]   An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers [J].
Hamamci, Serdar Ethem .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) :1964-1969
[23]   Fractional-order iterative learning control for fractional-order systems with initialization non-repeatability [J].
Xu, Xiaofeng ;
Chen, Jinshui ;
Lu, Jiangang .
ISA TRANSACTIONS, 2023, 143 :271-285
[24]   Extended Chen: a new class of chaotic fractional-order systems [J].
Nasrollahi, A. ;
Bigdeli, N. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (08) :880-896
[25]   Robust stabilizing regions of fractional-order PIλ controllers for fractional-order systems with time-delays [J].
Gao Z. ;
Zhai L.-R. ;
Liu Y.-D. .
International Journal of Automation and Computing, 2017, 14 (3) :340-349
[26]   Optimal Fractional-order Sliding Mode Controller Design for a class of Fractional-order Nonlinear Systems using particle swarm optimization Algorithm [J].
Abdelhamid, Djari ;
Toufik, Bouden ;
Vinagre, Blas M. .
CONTROL ENGINEERING AND APPLIED INFORMATICS, 2016, 18 (04) :14-25
[27]   Comments on "An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers" [J].
Hohenbichler, Norbert .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) :2712-2712
[28]   The Modeling of Multibody Systems with Fractional-Order Elements [J].
Kowal, Janusz ;
Lepiarz, Wojciech .
PROCEEDINGS OF THE 2013 14TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2013, :208-211
[29]   CHAOS AND ADAPTIVE SYNCHRONIZATIONS IN FRACTIONAL-ORDER SYSTEMS [J].
Liu, Xiaojun ;
Hong, Ling .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11)
[30]   Analogue Realization of Fractional-Order Dynamical Systems [J].
Dorcak, Lubomir ;
Valsa, Juraj ;
Gonzalez, Emmanuel ;
Terpak, Jan ;
Petras, Ivo ;
Pivka, Ladislav .
ENTROPY, 2013, 15 (10) :4199-4214