GaN remote epitaxy on a pristine graphene buffer layer via controlled graphitization of SiC

被引:1
作者
Lee, Seokje [1 ]
Kim, Jekyung [2 ]
Park, Bo-In [2 ]
Kim, Han Ik [1 ]
Lim, Changhyun [3 ]
Lee, Eunsu [1 ]
Yang, Jeong Yong [4 ]
Choi, Joonghoon [5 ,6 ]
Hong, Young Joon [5 ,6 ]
Chang, Celesta S. [1 ]
Kum, Hyun S. [7 ]
Kim, Jeehwan [2 ]
Lee, Kyusang [4 ]
Kim, Hyunseok [8 ]
Yi, Gyu-Chul [1 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[3] Seoul Natl Univ, Dept Mech Engn, Seoul 08826, South Korea
[4] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[5] Sungkyunkwan Univ, Dept Nano Engn, Suwon 16419, South Korea
[6] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol St, Dept Nano Sci & Technol, Suwon 16419, South Korea
[7] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[8] Univ Univ Illinois Urbana Champaign, Dept Elect & Comp Engn, Champaign, IL 61801 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
HETEROGENEOUS INTEGRATION; RELEASE LAYER; GROWTH; NUCLEATION; SAPPHIRE; FILMS;
D O I
10.1063/5.0235653
中图分类号
O59 [应用物理学];
学科分类号
摘要
Freestanding semiconductor membranes hold significant potential for heterogeneous integration technology and flexible electronics. Remote epitaxy, which leverages electrostatic interactions between epilayers and substrates through two-dimensional (2D) materials such as graphene, offers a promising solution for fabricating freestanding single-crystal membranes. Although the thinness, uniformity, and cleanness of 2D materials need to be meticulously controlled to enable the remote epitaxy of high-quality thin films, attaining such ideal growth templates has been challenging thus far. In this study, we demonstrate a controlled graphitization method to form a pristine graphene buffer layer (GBL) directly on SiC substrates and utilize this GBL template for GaN remote epitaxy. The quasi-two-dimensional GBL layer obtained by the method is completely free of damage or contamination, facilitating strong epitaxial interaction between the GaN epilayer and the SiC substrate. Furthermore, we reveal that a two-step growth of GaN on this GBL template enables the formation of single-crystal GaN epilayers and their exfoliation. Thus, this study represents an important step toward developing high-quality, freestanding semiconductor membranes.
引用
收藏
页数:7
相关论文
共 43 条
[1]   Effect of graphene domains orientation on quasi van der Waals epitaxy of GaN [J].
Borisenko, D. P. ;
Gusev, A. S. ;
Kargin, N., I ;
Dobrokhotov, P. L. ;
Timofeev, A. A. ;
Labunov, V. A. ;
Kovalchuk, N. G. ;
Mikhalik, M. M. ;
Komissarov, I., V .
JOURNAL OF APPLIED PHYSICS, 2021, 130 (18)
[2]   Remote epitaxial interaction through graphene [J].
Chang, Celesta S. ;
Kim, Ki Seok ;
Park, Bo-In ;
Choi, Joonghoon ;
Kim, Hyunseok ;
Jeong, Junseok ;
Barone, Matthew ;
Parker, Nicholas ;
Lee, Sangho ;
Zhang, Xinyuan ;
Lu, Kuangye ;
Suh, Jun Min ;
Kim, Jekyung ;
Lee, Doyoon ;
Han, Ne Myo ;
Moon, Mingi ;
Lee, Yun Seog ;
Kim, Dong-Hwan ;
Schlom, Darrell G. ;
Hong, Young Joon ;
Kim, Jeehwan .
SCIENCE ADVANCES, 2023, 9 (42)
[3]   Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics [J].
Cheng, Cheng-Wei ;
Shiu, Kuen-Ting ;
Li, Ning ;
Han, Shu-Jen ;
Shi, Leathen ;
Sadana, Devendra K. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices [J].
Chung, Kunook ;
Lee, Chul-Ho ;
Yi, Gyu-Chul .
SCIENCE, 2010, 330 (6004) :655-657
[5]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/NMAT2382, 10.1038/nmat2382]
[6]   Single-crystalline GaN microdisk arrays grown on graphene for flexible micro-LED application [J].
Fabunmi, Tobiloba Grace ;
Lee, Seokje ;
Kim, Han Ik ;
Yoo, Dongha ;
Lee, Jamin ;
Kim, Imhwan ;
Ali, Asad ;
Jang, Daniel ;
Lee, Sangmin ;
Lee, Changgu ;
Kim, Miyoung ;
Yi, Gyu-Chul .
NANOTECHNOLOGY, 2024, 35 (08)
[7]   Strain Release in GaN Epitaxy on 4° Off-Axis 4H-SiC [J].
Feng, Sirui ;
Zheng, Zheyang ;
Cheng, Yan ;
Ng, Yat Hon ;
Song, Wenjie ;
Chen, Tao ;
Zhang, Li ;
Liu, Kai ;
Cheng, Kai ;
Chen, Kevin J. .
ADVANCED MATERIALS, 2022, 34 (23)
[8]   High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer [J].
Feng, Yuxia ;
Sun, Huarui ;
Yang, Xuelin ;
Liu, Kang ;
Zhang, Jie ;
Shen, Jianfei ;
Liu, Danshuo ;
Cai, Zidong ;
Xu, Fujun ;
Tang, Ning ;
Yu, Tongjun ;
Wang, Xinqiang ;
Ge, Weikun ;
Shen, Bo .
APPLIED PHYSICS LETTERS, 2021, 118 (05)
[9]   Freestanding Membranes for Unique Functionality in Electronics [J].
Han, Sangmoon ;
Meng, Yuan ;
Xu, Zhihao ;
Kim, Justin S. ;
Li, Yimeng ;
Roh, Il-Pyo ;
Ahn, Hyojung ;
Kim, Dong-Hwan ;
Bae, Sang-Hoon .
ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (02) :690-704
[10]   Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions [J].
Kang, Ji-Hoon ;
Shin, Heechang ;
Kim, Ki Seok ;
Song, Min-Kyu ;
Lee, Doyoon ;
Meng, Yuan ;
Choi, Chanyeol ;
Suh, Jun Min ;
Kim, Beom Jin ;
Kim, Hyunseok ;
Hoang, Anh Tuan ;
Park, Bo-In ;
Zhou, Guanyu ;
Sundaram, Suresh ;
Vuong, Phuong ;
Shin, Jiho ;
Choe, Jinyeong ;
Xu, Zhihao ;
Younas, Rehan ;
Kim, Justin S. ;
Han, Sangmoon ;
Lee, Sangho ;
Kim, Sun Ok ;
Kang, Beomseok ;
Seo, Seungju ;
Ahn, Hyojung ;
Seo, Seunghwan ;
Reidy, Kate ;
Park, Eugene ;
Mun, Sungchul ;
Park, Min-Chul ;
Lee, Suyoun ;
Kim, Hyung-Jun ;
Kum, Hyun S. ;
Lin, Peng ;
Hinkle, Christopher ;
Ougazzaden, Abdallah ;
Ahn, Jong-Hyun ;
Kim, Jeehwan ;
Bae, Sang-Hoon .
NATURE MATERIALS, 2023, 22 (12) :1433-1434