Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants

被引:0
作者
Bernstein, Zachary J. [1 ,2 ]
Gierke, Taylor R. [1 ,2 ]
Dammen-Brower, Kris [1 ,2 ]
Tzeng, Stephany Y. [1 ,2 ,3 ]
Zhu, Stanley [1 ,2 ]
Chen, Sabrina S. [1 ,2 ]
Wilson, D. Scott [1 ,2 ]
Green, Jordan J. [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Yarema, Kevin J. [1 ,2 ]
Spangle, Jamine B. [1 ,2 ,4 ,5 ,6 ,7 ,8 ,9 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Translat Tissue Engn Ctr, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Inst Nanobiotechnol, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[6] Johns Hopkins Univ, Sch Med, Dept Ophthalmol, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Sch Med, Bloomberg Kimmel Inst Canc Immunotherapy, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Sch Publ Hlth, Dept Mol Microbiol & Immunol, Baltimore, MD 21205 USA
基金
美国国家科学基金会;
关键词
HAMSTER OVARY CELLS; SIALIC-ACID; MONOCLONAL-ANTIBODY; RECEPTOR; CYTOTOXICITY; HEXOSAMINES; DELIVERY; FLUX;
D O I
10.1016/j.jbc.2024.108005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular conjugation to antibodies has emerged as a growing strategy to combine the mechanistic activities of the attached molecule with the specificity of antibodies. A variety of technologies have been applied for molecular conjugation; however, these approaches face several limitations, including disruption of antibody structure, destabilization of the antibody, and/or heterogeneous conjugation patterns. Collectively, these challenges lead to reduced yield, purity, and function of conjugated antibodies. While glycoengineering strategies have largely been applied to study protein glycosylation and manipulate cellular metabolism, these approaches also harbor great potential to enhance the production and performance of protein therapeutics. Here, we devise a novel glycoengineering workflow for the development of site-specific antibody conjugates. This approach combines metabolic glycoengineering using azido-sugar analogs with newly installed N-linked glycosylation sites in the antibody constant domain to achieve specific conjugation to the antibody via the introduced N-glycans. Our technique allows facile and efficient manufacturing of well-defined antibody conjugates without the need for complex or destructive chemistries. Moreover, the introduction of conjugation sites in the antibody fragment crystallizable (Fc) domain renders this approach widely applicable and target agnostic. Our platform can accommodate up to three conjugation sites in tandem, and the extent of conjugation can be tuned through the use of different sugar analogs or production in different cell lines. We demonstrated that our platform is compatible with various use-cases, including fluorescent labeling, antibody-drug conjugation, and targeted gene delivery. Overall, this study introduces a versatile and
引用
收藏
页数:15
相关论文
共 59 条
  • [1] Exploiting metabolic glycoengineering to advance healthcare
    Agatemor, Christian
    Buettner, Matthew J.
    Ariss, Ryan
    Muthiah, Keerthana
    Saeui, Christopher T.
    Yarema, Kevin J.
    [J]. NATURE REVIEWS CHEMISTRY, 2019, 3 (10) : 605 - 620
  • [2] Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression
    Aich, Udayanath
    Campbell, Christopher T.
    Elmouelhi, Noha
    Weier, Christopher A.
    Sampathkumar, S. -Gopalan
    Choi, Sean S.
    Yarema, Kevrin J.
    [J]. ACS CHEMICAL BIOLOGY, 2008, 3 (04) : 230 - 240
  • [3] Metabolic oligosaccharide engineering with N-Acyl functionalized ManNAc analogs: Cytotoxicity, metabolic flux, and glycan-display considerations
    Almaraz, Ruben T.
    Aich, Udayanath
    Khanna, Hargun S.
    Tan, Elaine
    Bhattacharya, Rahul
    Shah, Shivam
    Yarema, Kevin J.
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2012, 109 (04) : 992 - 1006
  • [4] Boulenouar Hafsa, 2023, Front Biosci (Elite Ed), V15, P24, DOI 10.31083/j.fbe1504024
  • [5] The pharmacology and therapeutic applications of monoclonal antibodies
    Castelli, Maria Sofia
    McGonigle, Paul
    Hornby, Pamela J.
    [J]. PHARMACOLOGY RESEARCH & PERSPECTIVES, 2019, 7 (06): : e00535
  • [6] Meta-heterogeneity: Evaluating and Describing the Diversity in Glycosylation Between Sites on the Same Glycoprotein
    Caval, Tomislav
    Heck, Albert J. R.
    Reiding, Karli R.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2021, 20
  • [7] PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
    Chaudhury, Sidhartha
    Lyskov, Sergey
    Gray, Jeffrey J.
    [J]. BIOINFORMATICS, 2010, 26 (05) : 689 - 691
  • [8] Increasing the affinity of a human IgG1, for the neonatal Fc receptor: Biological consequences
    Dall'Acqua, WF
    Woods, RM
    Ward, ES
    Palaszynski, SR
    Patel, NK
    Brewah, YA
    Wu, H
    Kiener, PA
    Langermann, S
    [J]. JOURNAL OF IMMUNOLOGY, 2002, 169 (09) : 5171 - 5180
  • [9] Strategies for Glycoengineering Therapeutic Proteins
    Dammen-Brower, Kris
    Epler, Paige
    Zhu, Stanley
    Bernstein, Zachary J.
    Stabach, Paul R.
    Braddock, Demetrios T.
    Spangler, Jamie B.
    Yarema, Kevin J.
    [J]. FRONTIERS IN CHEMISTRY, 2022, 10
  • [10] Generation of DAR1 Antibody-Drug Conjugates for Ultrapotent Payloads Using Tailored GlycoConnect Technology
    de Bever, Laureen
    Popal, Sorraya
    van Schaik, Jord
    Rubahamya, Baron
    van Delft, Floris L.
    Thurber, Greg M.
    van Berkel, Sander S.
    [J]. BIOCONJUGATE CHEMISTRY, 2023, 34 (03) : 538 - 548