Inter-annual variation of gravity waves in the Arctic and Antarctic winter middle atmosphere

被引:20
作者
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
[1] Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
[2] Middle Atmosphere Dynamics Section, Naval Research Laboratory, Washington, DC
[3] Forschungszentrum Karlsruhe GmbH, Universität Karlsruhe, Institut für Meteorologie und Klimaforschung, Karlsruhe
来源
Adv. Space Res. | 2006年 / 11卷 / 2418-2423期
基金
美国国家航空航天局;
关键词
Antarctic; Arctic; Gravity wave; Middle atmosphere; Satellite observation; UARS MLS;
D O I
10.1016/j.asr.2005.09.036
中图分类号
学科分类号
摘要
High latitude, middle atmospheric (28-80 km) gravity wave observations from the Microwave Limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) are available during five Arctic and Antarctic winters between 1991 and 1997. Newer data from NOAA Advanced Microwave Sounding Unit (AMSU) instruments have been introduced recently, in order to extend the gravity wave measurements from 1998 to present. Analyses of MLS and AMSU data show substantial inter-annual variability in both magnitude and spatial patterns of gravity wave activity at both Arctic and Antarctic latitudes. © 2005 COSPAR.
引用
收藏
页码:2418 / 2423
页数:5
相关论文
共 21 条
[1]  
Alexander M.J., Interpretations of observed climatological patterns in stratospheric gravity wave variance, J. Geophys. Res., 103, pp. 8627-8640, (1998)
[2]  
Austin J., Shindell D., Beagley S.R., Bruhl C., Dameris M., Manzini E., Nagashima T., Newman P., Pawson S., Pitari G., Rozanov E., Schnadt C., Shepherd T.G., Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, pp. 1-27, (2003)
[3]  
Carslaw K.S., Peter T., Bacmeister J.T., Eckermann S.D., Widespread solid particle formation by mountain waves in the Arctic stratosphere, J. Geophys. Res., 104, pp. 1827-1836, (1999)
[4]  
Dhaniyala S., McKinney K.A., Wennberg P.O., Lee-wave clouds and denitrification of the polar stratosphere, Geophys. Res. Lett., 29, 9, (2002)
[5]  
Dornbrack A., Birner T., Fix A., Fientje H., Meister A., Schmid H., Browell E.V., Mahoney M.J., Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia, J. Geophys. Res., 107, 20, (2002)
[6]  
Duck T.J., Whiteway J.A., Carswell A.I., Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming, Geophys. Res. Lett., 25, pp. 2813-2816, (1998)
[7]  
Duck T.J., Whiteway J.A., Carswell A.I., The gravity wave-Arctic stratospheric vortex interaction, J. Atmos. Sci., 58, pp. 3581-3596, (2001)
[8]  
Eckermann S.D., Hirota I., Hocking W.K., Gravity-wave and equatorial-wave morphology of the stratosphere derived from long-term rocket soundings, Quart. J. Roy. Meteor. Soc., 121, pp. 149-186, (1995)
[9]  
Fueglistaler S., Luo B.P., Voigt C., Carslaw K.S., Peter T., NAT-rock formation by mother clouds: a microphysical model study, Atmos. Chem. Phys., 2, pp. 93-98, (2002)
[10]  
Jiang J.H., Wu D.L., Eckermann S.D., Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes, J. Geophys. Res., 107, (2002)