首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Deep learning via semi-supervised embedding
被引:0
作者
:
Weston, Jason
论文数:
0
引用数:
0
h-index:
0
机构:
Google, NY, United States
Google, NY, United States
Weston, Jason
[
1
]
Ratle, Frédéric
论文数:
0
引用数:
0
h-index:
0
机构:
Nuance Communications, Montreal, Canada
Google, NY, United States
Ratle, Frédéric
[
2
]
Mobahi, Hossein
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Computer Science, University of Illinois Urbana-Champaign, United States
Google, NY, United States
Mobahi, Hossein
[
3
]
Collobert, Ronan
论文数:
0
引用数:
0
h-index:
0
机构:
IDIAP Research Institute, Martigny, Switzerland
Google, NY, United States
Collobert, Ronan
[
4
]
机构
:
[1]
Google, NY, United States
[2]
Nuance Communications, Montreal, Canada
[3]
Department of Computer Science, University of Illinois Urbana-Champaign, United States
[4]
IDIAP Research Institute, Martigny, Switzerland
来源
:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
|
2012年
/ 7700 LECTURE NO卷
关键词
:
Neural networks;
D O I
:
10.1007/978-3-642-35289-8-34
中图分类号
:
TB18 [人体工程学];
Q98 [人类学];
学科分类号
:
030303 ;
1201 ;
摘要
:
We show how nonlinear semi-supervised embedding algorithms popular for use with shallow learning techniques such as kernel methods can be easily applied to deep multi-layer architectures, either as a regularizer at the output layer, or on each layer of the architecture. Compared to standard supervised backpropagation this can give significant gains. This trick provides a simple alternative to existing approaches to semi-supervised deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques. © Springer-Verlag Berlin Heidelberg 2012.
引用
收藏
页码:639 / 655
相关论文
未找到相关数据
未找到相关数据