Impact of arbuscular mycorrhizal fungi on maize rhizosphere microbiome stability under moderate drought conditions

被引:1
|
作者
Chen, Yalin [1 ,2 ]
Sun, Chunyu [2 ]
Yan, Yuxin [1 ,2 ]
Jiang, Dongxue [1 ,2 ]
Huangfu, Shaoqi [1 ,2 ]
Tian, Lei [1 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, State Key Lab Black Soils Conservat & Utilizat, Changchun 130102, Peoples R China
[2] Jilin Agr Univ, Coll Life Sci, Changchun 130000, Peoples R China
关键词
Agriculture; Arbuscular mycorrhizal fungi; Drought stress; Resistance; Microorganisms; Maize; TOLERANCE; ROOTS; L;
D O I
10.1016/j.micres.2024.127957
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
With an alarming increase in global greenhouse gas emissions, unstable weather conditions are significantly impacting agricultural production. Drought stress is one of the frequent consequences of climate change that affects crop growth and yield. Addressing this issue is critical to ensure stable crop productivity under drought conditions. Arbuscular mycorrhizal fungi (AMF) establish symbiotic relationships with plants and enhance their resistance to adverse conditions. Effects of arbuscular mycorrhizal associations on the rhizosphere microbiome and root transcriptome under drought conditions have not been explored. Here, we investigated the effects of AMF and drought stress on rhizosphere microorganisms and root transcriptome of maize plants grown in chernozem soil. We used high-throughput sequencing data of bacterial 16S rRNA and fungal internal transcribed spacer regions (ITS) to identify rhizosphere microorganisms. Transcriptomic data were used to assess gene expression in maize plants under different treatments. Our results show that AMF maintains the composition of maize rhizosphere microorganisms under drought stress. In particular, the bacterial and fungal phyla maintained were Actinomycetes and Ascomycota, respectively. Transcriptomic data indicated that AMF influenced gene expression in maize plants under drought stress. Under drought stress, the expression of SWEET13, CHIT3, and RPL23A was significantly higher in the presence of AMF than it was without AMF inoculation, indicating better sugar transport, reduced malondialdehyde accumulation, and improved water use efficiency in AMF-inoculated maize plants. These findings suggest that AMF can enhance the resistance of maize to moderate drought stress by stabilising plant physical traits, which may help maintain the structure of the rhizosphere microbial community. This study provides valuable theoretical insights that should aid the utilization of AMF in sustainable agricultural practices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of Arbuscular Mycorrhizal Fungi on Growth and Nutrient Accumulation of Oat under Drought Conditions
    Tian, Haoqi
    Jia, Zhifeng
    Liu, Wenhui
    Wei, Xiaoxin
    Wang, Hui
    Bao, Gensheng
    Li, Jin
    Zhou, Qingping
    AGRONOMY-BASEL, 2023, 13 (10):
  • [2] Arbuscular mycorrhizal fungi enhance drought resistance and alter microbial communities in maize rhizosphere soil
    Li, Juan
    Zhou, Liuyan
    Chen, Guo
    Yao, Mengyao
    Liu, Zhigang
    Li, Xiaorong
    Yang, Xinping
    Yang, Yang
    Cai, Darun
    Tuerxun, Zumuremu
    Li, Bo
    Nie, Tengkun
    Chen, Xunji
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2025, 37
  • [3] Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition
    Nacoon, Sabaiporn
    Ekprasert, Jindarat
    Riddech, Nuntavun
    Mongkolthanaruk, Wiyada
    Jogloy, Sanun
    Vorasoot, Nimitr
    Cooper, Julia
    Boonlue, Sophon
    RHIZOSPHERE, 2021, 17
  • [4] Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea
    Hashem, Abeer
    Kumar, Ashwani
    Al-Dbass, Abeer M.
    Alqarawi, Abdulaziz A.
    Al-Arjani, Al-Bandari Fahad
    Singh, Garima
    Farooq, Muhammad
    Abd Allah, Elsayed Fathi
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2019, 26 (03) : 614 - 624
  • [5] Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics
    Wang, Hong-Rui
    Du, Xin-Ran
    Zhang, Zhuo-Yun
    Feng, Fu-Juan
    Zhang, Jia-Ming
    IMETA, 2023, 2 (04):
  • [6] Impact of Arbuscular Mycorrhizal Fungi on Growth and Productivity of Sugarcane Under Field Conditions
    Juntahum, Suchat
    Jongrungklang, Nuntawoot
    Kaewpradit, Wanwipa
    Lumyong, Saisamorn
    Boonlue, Sophon
    SUGAR TECH, 2020, 22 (03) : 451 - 459
  • [7] Response of sulphur cycling microorganisms to arbuscular mycorrhizal fungi in the rhizosphere of maize
    AmoraLazcano, E
    Azcon, R
    APPLIED SOIL ECOLOGY, 1997, 6 (03) : 217 - 222
  • [8] Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions
    Tereucan, Gonzalo
    Ruiz, Antonieta
    Nahuelcura, Javiera
    Oyarzun, Paulina
    Santander, Christian
    Winterhalter, Peter
    Avelar Ferreira, Paulo Ademar
    Cornejo, Pablo
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2022, 102 (05) : 1927 - 1938
  • [9] Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions
    Liu, A
    Hamel, C
    Elmi, A
    Costa, C
    Ma, B
    Smith, DL
    CANADIAN JOURNAL OF SOIL SCIENCE, 2002, 82 (03) : 271 - 278
  • [10] Arbuscular mycorrhizal fungi mitigate cadmium stress in maize
    Kuang, Qiqiang
    Wu, Yujie
    Gao, Yamin
    An, Tingting
    Liu, Shuo
    Liang, Liyan
    Xu, Bingcheng
    Zhang, Suiqi
    Yu, Min
    Shabala, Sergey
    Chen, Yinglong
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2025, 289