aluminum alloy;
data augmentation;
fatigue;
hybrid framework;
machine learning;
material characterization;
NEURAL-NETWORKS;
CRACK-GROWTH;
LIFE;
PREDICTIONS;
REGRESSION;
D O I:
10.1111/ffe.14459
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
The complicated and stochastic nature, coupled with uncertainties and data scatter, poses challenges in developing a general fatigue model. This study introduces a hybrid framework that integrates an empirical model with data-driven approaches, aiming to address data scarcity and streamline the fatigue characterization of aluminum alloys. It was found that support vector regression (SVR) and neural network (NN) exhibit superior performance, with SVR achieving a mean absolute error (MAE) of 0.13 (cycles to failure in log scale) for training and 0.14 for testing, and NN reaching an MAE of 0.15 for training and 0.16 for testing data. The employment of leave-one-group-out-cross-validation (LOGOCV) ensured the generalizability of the models, with the effectiveness confirmed by the actual-predicted life plot. The results demonstrated that almost 98% of predicted data fell within the life factor of +/- 1. This methodology reduces the requirement for experimentation and provides the prospect of automating fatigue design and characterization.
OMAE2011: PROCEEDINGS OF THE ASME 30TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, VOL 3: MATERIALS TECHNOLOGY,
2011,
: 131
-
139
机构:
Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USAPenn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
Dharmadhikari, Susheel
Bhattacharya, Chandrachur
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USAPenn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
Bhattacharya, Chandrachur
Ray, Asok
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
Penn State Univ, Dept Math, University Pk, PA 16802 USAPenn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
Ray, Asok
Basak, Amrita
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USAPenn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
机构:
SINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Meng, Jin
Zhou, Yu-Jie
论文数: 0引用数: 0
h-index: 0
机构:
SINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Zhou, Yu-Jie
Ye, Tian-Rui
论文数: 0引用数: 0
h-index: 0
机构:
SINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Ye, Tian-Rui
Xiao, Yi-Tian
论文数: 0引用数: 0
h-index: 0
机构:
SINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Xiao, Yi-Tian
Lu, Ya-Qiu
论文数: 0引用数: 0
h-index: 0
机构:
Jianghan Oilfield Co, Res Inst Explorat & Dev, SINOPEC, Wuhan 430223, Hubei, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Lu, Ya-Qiu
Zheng, Ai -Wei
论文数: 0引用数: 0
h-index: 0
机构:
Jianghan Oilfield Co, Res Inst Explorat & Dev, SINOPEC, Wuhan 430223, Hubei, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China
Zheng, Ai -Wei
Liang, Bang
论文数: 0引用数: 0
h-index: 0
机构:
Jianghan Oilfield Co, Res Inst Explorat & Dev, SINOPEC, Wuhan 430223, Hubei, Peoples R ChinaSINOPEC, Petr Explorat & Prod Res Inst, Beijing 100083, Peoples R China