Cellular Automata Complexity Threshold and Classification: A Geometric Perspective
被引:1
作者:
论文数: 引用数:
h-index:
机构:
Al-Emam, Mohamed
[1
,2
]
Kaurov, Vitaliy
论文数: 0引用数: 0
h-index: 0
机构:
Wolfram Res Inc, Champaign, IL 61820 USACairo Univ, Fac Engn Elect, Cairo, Egypt
Kaurov, Vitaliy
[3
]
机构:
[1] Cairo Univ, Fac Engn Elect, Cairo, Egypt
[2] Cairo Univ, Commun Dept, Cairo, Egypt
[3] Wolfram Res Inc, Champaign, IL 61820 USA
来源:
COMPLEX SYSTEMS
|
2014年
/
23卷
/
04期
关键词:
Ordinary differential equations;
D O I:
10.25088/ComplexSystems.23.4.355
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This paper presents the results of mathematical experiments on the so-called "orientation vector." It looks at complexity in terms of three perspectives: Wolfram, Langton, and Chua. Critically, we consider Chua's geometrical complexity index and a complexity-based classification of elementary cellular automata. Ideas in terms of solutions for ordinary differential equations and complexity measurements are proposed to the research community for discussion.