首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Steady-state diffusion-advection by exponential finite elements
被引:0
|
作者
:
Centre for Geotechnical Research, Dept. of Civil Engineering, Univ. of Sydney, Sedney, NSW 2006, Australia
论文数:
0
引用数:
0
h-index:
0
Centre for Geotechnical Research, Dept. of Civil Engineering, Univ. of Sydney, Sedney, NSW 2006, Australia
[
1
]
机构
:
来源
:
Int. J. Geomech.
|
2006年
/ 6卷
/ 428-434期
关键词
:
Differential equations - Finite element method - Galerkin methods - Mathematical models;
D O I
:
10.1061/(ASCE)1532-3641(2006)6:6(428)
中图分类号
:
学科分类号
:
摘要
:
Conventional finite-element solutions of the diffusion-advection equation exhibit numerical oscillations around the exact solution in the presence of strong advective transport. Stabilized methods modifying the standard Galerkin statement of the equation are usually used to remove oscillations and improve the speed of convergence of the method. This paper proposes an alternative approach, based on an unmodified Galerkin statement using a special eight-noded finite element whose interpolation functions vary exponentially, rather than polynomially, yielding a better approximation of the solution of the differential equation. In one-dimensional problems with specified concentration or flux at the inlet, the method increases the element Péclet number limit from 1 to 150. In two-dimensional problems, a significant improvement in accuracy relative to conventional polynomial elements is achieved. The method is particularly suitable for the h-adaptive schemes and can be easily incorporated into existing finite-element software through a minimal modification of their element libraries. © 2006 ASCE.
引用
收藏
相关论文
共 50 条
[1]
Exponential finite elements for diffusion-advection problems
El-Zein, A
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sydney, Dept Civil Engn, Geotech Res Ctr, Sydney, NSW 2006, Australia
Univ Sydney, Dept Civil Engn, Geotech Res Ctr, Sydney, NSW 2006, Australia
El-Zein, A
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,
2005,
62
(15)
: 2086
-
2103
[2]
A NOTE ON THE STEADY-STATE ADVECTION - DIFFUSION EQUATION
FERRERI, JC
论文数:
0
引用数:
0
h-index:
0
FERRERI, JC
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,
1985,
5
(06)
: 593
-
596
[3]
AN INTEGRAL SOLUTION FOR THE DIFFUSION-ADVECTION EQUATION
TAIGBENU, A
论文数:
0
引用数:
0
h-index:
0
机构:
Cornell Univ, Ithaca, NY, USA, Cornell Univ, Ithaca, NY, USA
TAIGBENU, A
LIGGETT, JA
论文数:
0
引用数:
0
h-index:
0
机构:
Cornell Univ, Ithaca, NY, USA, Cornell Univ, Ithaca, NY, USA
LIGGETT, JA
WATER RESOURCES RESEARCH,
1986,
22
(08)
: 1237
-
1246
[4]
DIFFUSION-ADVECTION MODELS FOR RADIOCARBON
CRAIG, H
论文数:
0
引用数:
0
h-index:
0
CRAIG, H
TRANSACTIONS-AMERICAN GEOPHYSICAL UNION,
1969,
50
(04):
: 210
-
&
[5]
Lability of complexes in steady-state finite planar diffusion
Salvador, J
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Lleida, Dept Quim, Lleida 25198, Spain
Salvador, J
Puy, J
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Lleida, Dept Quim, Lleida 25198, Spain
Puy, J
Cecília, J
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Lleida, Dept Quim, Lleida 25198, Spain
Cecília, J
Galceran, J
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Lleida, Dept Quim, Lleida 25198, Spain
Galceran, J
JOURNAL OF ELECTROANALYTICAL CHEMISTRY,
2006,
588
(02)
: 303
-
313
[6]
ON QUADRATIC ELEMENTS IN FINITE-ELEMENT SOLUTIONS OF STEADY-STATE CONVECTION-DIFFUSION EQUATION
HEINRICH, JC
论文数:
0
引用数:
0
h-index:
0
HEINRICH, JC
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,
1980,
15
(07)
: 1041
-
1052
[7]
BLOW UP FOR A DIFFUSION-ADVECTION EQUATION
ALIKAKOS, ND
论文数:
0
引用数:
0
h-index:
0
机构:
NATL SCI FDN,APPL MATH,WASHINGTON,DC 20550
ALIKAKOS, ND
BATES, PW
论文数:
0
引用数:
0
h-index:
0
机构:
NATL SCI FDN,APPL MATH,WASHINGTON,DC 20550
BATES, PW
GRANT, CP
论文数:
0
引用数:
0
h-index:
0
机构:
NATL SCI FDN,APPL MATH,WASHINGTON,DC 20550
GRANT, CP
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS,
1989,
113
: 181
-
190
[8]
Steady-state solutions to the advection-diffusion equation and ghost coordinates for a chaotic flow
Hudson, S. R.
论文数:
0
引用数:
0
h-index:
0
机构:
Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
Hudson, S. R.
PHYSICAL REVIEW E,
2007,
76
(04)
[9]
Insight into the flow-condition-based interpolation finite element approach: solution of steady-state advection-diffusion problems
Kohno, H
论文数:
0
引用数:
0
h-index:
0
机构:
MIT, Dept Mech Engn, Cambridge, MA 02139 USA
MIT, Dept Mech Engn, Cambridge, MA 02139 USA
Kohno, H
Bathe, KJ
论文数:
0
引用数:
0
h-index:
0
机构:
MIT, Dept Mech Engn, Cambridge, MA 02139 USA
MIT, Dept Mech Engn, Cambridge, MA 02139 USA
Bathe, KJ
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,
2005,
63
(02)
: 197
-
217
[10]
THE OCCURRENCE OF INTERFACES IN NONLINEAR DIFFUSION-ADVECTION PROCESSES
GILDING, BH
论文数:
0
引用数:
0
h-index:
0
GILDING, BH
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS,
1988,
100
(03)
: 243
-
263
←
1
2
3
4
5
→