On distribution of zeros of random polynomials in complex plane

被引:0
|
作者
Ibragimov, Ildar [1 ]
Zaporozhets, Dmitry [1 ]
机构
[1] St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, 191023
来源
Springer Proceedings in Mathematics and Statistics | 2013年 / 33卷
基金
俄罗斯基础研究基金会;
关键词
Random analytic function; Roots concentration; Roots of random polynomial;
D O I
10.1007/978-3-642-33549-5_18
中图分类号
学科分类号
摘要
Let Gn(z)=ξ0 + ξ1z +...+ ξnzn be a random polynomial with i.i.d. coefficients (real or complex). We show that the arguments of the roots of Gn(z) are uniformly distributed in [0, 2π] asymptotically as n→∞. We also prove that the condition E ln(1 + {pipe}ξ0{pipe}<1∞ is necessary and sufficient for the roots to asymptotically concentrate near the unit circumference. © Springer-Verlag Berlin Heidelberg 2013.
引用
收藏
页码:303 / 323
页数:20
相关论文
共 3 条
  • [1] ASYMPTOTIC DISTRIBUTION OF COMPLEX ZEROS OF RANDOM ANALYTIC FUNCTIONS
    Kabluchko, Zakhar
    Zaporozhets, Dmitry
    ANNALS OF PROBABILITY, 2014, 42 (04) : 1374 - 1395
  • [2] ON THE DISTRIBUTION OF COMPLEX ROOTS OF RANDOM POLYNOMIALS WITH HEAVY-TAILED COEFFICIENTS
    Goetze, F.
    Zaporozhets, D.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (04) : 696 - U217
  • [3] THE ANGULAR DISTRIBUTION OF ZEROS OF RANDOM ANALYTIC FUNCTIONS
    Mahola, M. P.
    Filevych, P. V.
    UFA MATHEMATICAL JOURNAL, 2012, 4 (01): : 115 - 127