Crystal structure, electronic conductivity and oxygen exchange kinetics of high-entropy perovskites La0.2Pr0.2Nd0.2Sm0.2Sr0.2Co1-xFexO3-δ (x=0, 0.5, 1)

被引:1
|
作者
Pretschuh, Patrick [1 ]
Egger, Andreas [1 ]
Bucher, Edith [1 ]
机构
[1] Mt Univ Leoben, Chair Phys Chem, Franz Josef Str 18, A-8700 Leoben, Austria
关键词
High-entropy perovskite; Solid oxide cell; Electronic conductivity; Oxygen exchange kinetics; Crystal structure; Lattice distortion; EFFECTIVE IONIC-RADII; ELECTRICAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; SURFACE EXCHANGE; CATHODE MATERIALS; SOFC; LA1-XSRXCOO3-DELTA; NONSTOICHIOMETRY; DIFFUSION; TEMPERATURE;
D O I
10.1016/j.ssi.2024.116705
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-entropy perovskites (HEPs) are attracting increasing attention as air electrode materials for solid oxide cells (SOCs). In this work, three different HEPs from the series La0.2Pr0.2Nd0.2Sm0.2Sr0.2Co1-xFexO3-delta (x = 0, 0.5, 1) are synthesized using the citric acid-ethylenediaminetetraacetate (EDTA) method. X-ray diffraction analysis finds crystal structures with the orthorhombic space group 62 (Pnma) at room temperature. The lattice distortion increases with increased Fe-substitution at the B-site. The electrical conductivity (sigma(e)) is determined at temperatures from 600 to 850 degrees C and oxygen partial pressures (pO(2)) between 0.001 and 0.15 bar. For the pure cobaltate, sigma(e) is 1469 S cm(-1) at 800 degrees C and 0.15 bar pO(2). The conductivity is significantly reduced with Fe-doping, reaching 87 S cm(-1) for the pure ferrate at 800 degrees C. The chemical oxygen surface exchange coefficient (k(chem)) and the chemical oxygen diffusion coefficient (D-chem) are determined by the electrical conductivity relaxation technique. D-chem is found to be quite independent of B-site doping and pO(2), with values of approx. 5 x 10(-6) cm(2) s(-1) at 800 degrees C. In contrast, k(chem) is strongly influenced by the B-site composition, which results in an increase of more than one order of magnitude from the ferrate (3.4 x 10(-5) cm s(-1)) to the cobaltate (7.7 x 10(-4) cm s(-1)) at 800 degrees C and 0.001 bar pO(2). This clearly demonstrates the beneficial effects of Co on the electronic conductivity as well as on the catalytic activity for the oxygen surface exchange reaction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A stable high-entropy perovskite La 0.2 Pr 0.2 Nd 0.2 Sm 0.2 Sr 0.2 Co 0.8 Fe 0.2 O 3-δ oxygen electrode for reversible solid oxide cells
    Li, Ruoyu
    Zhang, Jinke
    Chen, Zhengpeng
    Qian, Xiuyang
    Gao, Yuan
    Jin, Fangjun
    Tsvetkov, Dmitry Sergeevich
    Ling, Yihan
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 313
  • [2] Preparation and Magnetic Properties of High-Entropy Perovskite Oxide (La0.2Y0.2Pr0.2Nd0.2Sm0.2)CrO3
    Li, Wenyong
    Cui, Yajing
    Zhao, Yong
    Chen, Yongliang
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2023, 36 (05) : 1413 - 1419
  • [3] Preparation and Magnetic Properties of High-Entropy Perovskite Oxide (La0.2Y0.2Pr0.2Nd0.2Sm0.2)CrO3
    Wenyong Li
    Yajing Cui
    Yong Zhao
    Yongliang Chen
    Journal of Superconductivity and Novel Magnetism, 2023, 36 : 1413 - 1419
  • [4] Electrochemical and microstructural characterization of the high-entropy perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ for solid oxide cell air electrodes
    Pretschuh, Patrick
    Egger, Andreas
    Brunner, Roland
    Bucher, Edith
    FUEL CELLS, 2023, 23 (06) : 377 - 386
  • [5] High-entropy chromate (La 0.2 Nd 0.2 Sm 0.2 Eu 0.2 Gd 0.2 )CrO 3 for high-temperature NTC thermistors
    Chen, Xiaoyi
    Li, Xiaohui
    Chen, Zhaoyang
    Li, Fuming
    Kong, Wenwen
    Chang, Aimin
    Gao, Bo
    SCRIPTA MATERIALIA, 2024, 246
  • [6] High-Entropy Perovskites as Multifunctional Metal Oxide Semiconductors: Synthesis and Characterization of (Gd0.2Nd0.2La0.2Sm0.2Y0.2)CoO3
    Krawczyk, Pawel A.
    Jurczyszyn, Michal
    Pawlak, Jakub
    Salamon, Wojciech
    Baran, Pawel
    Kmita, Angelika
    Gondek, Lukasz
    Sikora, Marcin
    Kapusta, Czeslaw
    Straczek, Tomasz
    Wyrwa, Jan
    Zywczak, Antoni
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (10) : 3211 - 3220
  • [7] Cobalt-Free High-Entropy Perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2FeO3-δ Solid Oxide Cell Air Electrode With Enhanced Performance
    Pretschuh, Patrick
    Egger, Andreas
    Paulachan, Priya
    Schoeggl, Johanna
    Brunner, Roland
    Bucher, Edith
    FUEL CELLS, 2024, 24 (03)
  • [8] Novel (La0.2Eu0.2Nd0.2Sm0.2Pr0.2)(Al0.6Co0.4)O3-6 and (La0.2Eu0.2Nd0.2Sm0.2Ca0.2)(Al0.6Co0.4)O3-6 high-entropy ceramics with high emissivity and low degradation
    Ma, Shihan
    Wang, Qinghu
    Li, Yawei
    Yuan, Xinglai
    Sang, Shaobai
    Wang, Ke
    Wu, Runke
    Huang, Liang
    Liang, Xiong
    Pan, Liping
    Xu, Yibiao
    CERAMICS INTERNATIONAL, 2024, 50 (08) : 13366 - 13377
  • [9] Microstructure and magnetic properties of novel high-entropy perovskite ceramics (Gd 0.2 La 0.2 Nd 0.2 Sm 0.2 Y 0.2 )MnO 3
    Qin, Jiedong
    Wen, Zhiqin
    Ma, Bo
    Wu, Zhenyu
    Lv, Yunming
    Yu, Junjie
    Zhao, Yuhong
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 597
  • [10] Preparation of a nano-size (La0.2Nd0.2Sm0.2Sr0.2Ba0.2)Co0.2Fe0.8O3-δ/SDC high-entropy oxide composite cathode
    Xu, Hongmei
    Dang, Liyuan
    Yan, Jianhui
    Wan, Feng
    Gong, Weiping
    MATERIALS LETTERS, 2023, 338