Probabilistic Machine Learning for preventing fatigue failures in Additively Manufactured SS316L

被引:2
作者
Centola, Alessio [1 ]
Ciampaglia, Alberto [1 ]
Paolino, Davide Salvatore [1 ]
Tridello, Andrea [1 ]
机构
[1] Politecn Torino, Dept Mech & Aerosp Engn, I-10129 Turin, Italy
关键词
Fatigue; Probabilistic machine learning; Machine learning; Process parameters; Design; Additive manufacturing; SS316L; Failure prevention; BEHAVIOR; STRENGTH; STRESS;
D O I
10.1016/j.engfailanal.2024.109081
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study presents a probabilistic machine learning approach to predict and improve the fatigue performance of additively manufactured SS316L components. By analyzing key manufacturing parameters as process settings, thermal treatments and surface treatments, the developed models provide statistical estimations of fatigue strength, that provides valuable insights to extend fatigue life. Trained on an experimental database of fatigue tests, the Bayesian Neural Network (BNN) is employed to separate model uncertainty, related to data limitations, from the uncertainty inherent in the fatigue phenomenon. This approach robustly predicts Probabilistic StressLife (PSN) curves, offering valuable insights into the impact of manufacturing parameters on fatigue resistance, allowing to further postpone fatigue failures. The results demonstrate increased robustness and trustworthiness compared to other deterministic machine learning models, making this method suitable for critical applications where failure prevention is crucial.
引用
收藏
页数:23
相关论文
共 54 条
[1]   Effect of HIP post-processing at 850 °C/200 MPa in the fatigue behavior of Ti-6Al-4V alloy fabricated by Selective Laser Melting [J].
Alegre, J. M. ;
Diaz, A. ;
Garcia, R. ;
Peral, L. B. ;
Cuesta, I. I. .
INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
[2]   The effects of SLM process parameters on the relative density and hardness of austenitic stainless steel 316L [J].
Bakhtiarian, Mohammadamin ;
Omidvar, Hamid ;
Mashhuriazar, Amirhossein ;
Sajuri, Zainuddin ;
Gur, Hakan .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 :1616-1629
[3]   An Investigation of the Microstructure and Fatigue Behavior of Additively Manufactured AISI 316L Stainless Steel with Regard to the Influence of Heat Treatment [J].
Blinn, Bastian ;
Klein, Marcus ;
Glaessner, Christopher ;
Smaga, Marek ;
Aurich, Jan C. ;
Beck, Tilmann .
METALS, 2018, 8 (04)
[4]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[5]   Influence of process parameters on surface roughness of aluminum parts produced by DMLS [J].
Calignano, F. ;
Manfredi, D. ;
Ambrosio, E. P. ;
Iuliano, L. ;
Fino, P. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 67 (9-12) :2743-2751
[6]   Review on machine learning techniques for the assessment of the fatigue response of additively manufactured metal parts [J].
Centola, Alessio ;
Tridello, Andrea ;
Ciampaglia, Alberto ;
Berto, Filippo ;
Paolino, Davide Salvatore .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (08) :2700-2729
[7]   Machine learning methods to predict the fatigue life of selectively laser melted Ti6Al4V components [J].
Centola, Alessio ;
Ciampaglia, Alberto ;
Tridello, Andrea ;
Paolino, Davide Salvatore .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2023, 46 (11) :4350-4370
[8]   Influence of Porosity on Fatigue Behaviour of 18Ni300 Steel SLM CT Specimens at Various Angles [J].
Cerezo, Pablo M. ;
Aguilera, Jose A. ;
Garcia-Gonzalez, Antonio ;
Lopez-Crespo, Pablo .
MATERIALS, 2024, 17 (02)
[9]   Fatigue modeling using neural networks: A comprehensive review [J].
Chen, Jie ;
Liu, Yongming .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (04) :945-979
[10]   Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning [J].
Chen, Jie ;
Liu, Yongming .
ADDITIVE MANUFACTURING, 2021, 39