The flow heat conduction model and application based on time-space fractional derivative

被引:0
|
作者
Yang, Ai-Min [1 ,2 ]
Zhang, Yu-Zhu [1 ,3 ]
Long, Yue [3 ]
Liu, Wei-Xing [4 ]
Zhou, Yi-Jun [4 ]
机构
[1] College of Mechanical Engineering, Yanshan University, Qinhuangdao, China
[2] College of Science, Hebei United University, Tangshan, China
[3] College of Metallurgy and Energy, Hebei United University, Tangshan, China
[4] Qinggong College, Hebei United University, Tangshan, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:844 / 850
相关论文
共 50 条
  • [1] Analytic Investigation of a Reaction-diffusion Brusselator Model with the Time-space Fractional Derivative
    Aslan, Ismail
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2014, 15 (02) : 149 - 155
  • [2] A new visco-elasto-plastic model via time-space fractional derivative
    Hei, X.
    Chen, W.
    Pang, G.
    Xiao, R.
    Zhang, C.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2018, 22 (01) : 129 - 141
  • [3] Time-Space Fractional Heat Equation in the Unit Disk
    Ibrahim, Rabha W.
    Jalab, Hamid A.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Unsteady free convection of second-grade nanofluid with a new time-space fractional heat conduction
    Shen, Ming
    Wu, Yuhang
    Chen, Hui
    HEAT TRANSFER, 2020, 49 (02) : 709 - 725
  • [5] Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative
    Arshad, Sadia
    Huang, Jianfei
    Khaliq, Abdul Q. M.
    Tang, Yifa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 1 - 15
  • [6] Signal Smoothing with Time-Space Fractional Order Model
    Li, Yuanlu
    MEASUREMENT SCIENCE REVIEW, 2021, 21 (01): : 25 - 32
  • [7] A Time-Space Numerical Procedure for Solving the Sideways Heat Conduction Problem
    Tan, Ching-Chuan
    Shih, Chao-Feng
    Shen, Jian-Hung
    Chen, Yung-Wei
    MATHEMATICS, 2025, 13 (05)
  • [8] TIME-SPACE BOUNDARY ELEMENTS FOR TRANSIENT HEAT-CONDUCTION PROBLEMS
    TANAKA, K
    TANAKA, M
    APPLIED MATHEMATICAL MODELLING, 1980, 4 (05) : 331 - 334
  • [9] Numerical Scheme for Solving Time-Space Vibration String Equation of Fractional Derivative
    Elsayed, Asmaa M.
    Orlov, Viktor N.
    MATHEMATICS, 2020, 8 (07)
  • [10] Theory of thermoelasticity based on the space-time-fractional heat conduction equation
    Povstenko, Y. Z.
    PHYSICA SCRIPTA, 2009, T136