Model-based position control of Shape memory alloy actuators

被引:0
作者
Neugebauer, Reimund [1 ]
Pagel, Kenny [1 ]
Bucht, Andre [1 ]
Drossel, Welf-Guntram [1 ]
机构
[1] Department of Adaptronics and Acoustics, Fraunhofer Institute for Machine Tools and Forming Technology, 01187 Dresden
关键词
Actuator; Length-resistance-correlation; Mechatronics; Model-based control; Position control; Resistance-based position control; Shape-memory-alloy; SMA;
D O I
10.1504/IJMMS.2012.046521
中图分类号
学科分类号
摘要
Shape-memory-alloys (SMAs) are easy to integrate into mechanical structures and capable of handling high specific workloads. Therefore, SMAs possess an outstanding potential to serve as positioning devices in various applications. We present here the multi-domain modelling of an electrically heated SMA wire which includes changes of electrical parameters in conjunction to mechanical parameters. Due to the correlation between electrical resistance and mechanical stroke, it was possible to implement a resistance-based position control without the necessity of an external positioning sensor. In order to design a linear position controller by common rules, the highly complex and non-linear model was simplified. Controller development yielded a PID algorithm that was implemented on a rapid prototyping system as part of an SMA wire test bench. The models accuracy was verified by various measurements with different wires and multiple loads. Based on that, it was possible to design an actuator which utilises a flexible socket instead of fixed mountings. Copyright © 2012 Inderscience Enterprises Ltd.
引用
收藏
页码:93 / 105
页数:12
相关论文
共 13 条
[1]  
Ahn K.K., Kha N.B., Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic, Mechatronics, 18, 3, pp. 141-152, (2008)
[2]  
Besselink P.A., Procedure for the calculation of the geometry of a resistance heated NiTi-actuator, Proceedings of the 5th International Conference on New Actuators, (1996)
[3]  
Bucht A., Pagel K., Jung J., Numerische simulation des aktivierungsverhaltens von thermischen formgedächtnislegierungen, Model-based Design Forum, (2009)
[4]  
Czechowicz A., Meier H., Dilthey S., Regeln von FG-legierungen mit widerstandsrückkopplung, Mechatronik, 116, 11-12, pp. 24-27, (2008)
[5]  
Czechowicz A., Meier H., Haberland C., Langbein S., Smart control systems for smart materials, Journal of Materials Engineering and Performance, 20, 4-5, pp. 559-563, (2011)
[6]  
Kunze H., Bucht A., Pagel K., Zerneke A., Leichte formgedächtnisaktoren im automobil, ATZ 04/2011, pp. 266-271, (2011)
[7]  
Mertmann M., NiTi-formgedaechtnislegierungen fuer aktoren der greifertechnik, VDI Verlag, Fortschrittsbericht VDI, 469, (1997)
[8]  
Oelschlaeger L., Numerische Modellierung des Aktivierungsverhaltens von Formgedaechtnisaktoren am Beispiel Eines Schrittantriebes, (2004)
[9]  
Schiedeck F., Mojrzisch S., Frequency-domain control design for shape memory alloy actuators, Sensors and Actuators, 169, 1, pp. 133-140, (2011)
[10]  
Seelecke S., Modeling the dynamic behavior of shape memory alloys, International Journal of Non-Linear Mechanics, 37, 8, pp. 1363-1374, (2002)