MUsculo-Skeleton-Aware (MUSA) deep learning for anatomically guided head-and-neck CT deformable registration

被引:0
作者
Liu, Hengjie [1 ,2 ]
McKenzie, Elizabeth [3 ]
Xu, Di [4 ,5 ]
Xu, Qifan [4 ,5 ]
Chin, Robert K. [2 ]
Ruan, Dan [1 ,2 ]
Sheng, Ke [4 ,5 ]
机构
[1] Univ Calif Los Angeles, Phys & Biol Med Grad Program, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Dept Radiat Oncol, Los Angeles, CA USA
[3] Cedars Sinai Med Ctr, Dept Radiat Oncol, Los Angeles, CA USA
[4] Univ Calif San Francisco, UCSF UC Berkeley Grad Program Bioengn, San Francisco, CA USA
[5] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
Deformable image registration; Deep learning; Anatomical constraint; Head and neck CT; MEDICAL IMAGE REGISTRATION; ACCURACY; MOTION; MODEL; DEFORMATIONS; VOXELMORPH; TISSUE;
D O I
10.1016/j.media.2024.103351
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep-learning-based deformable image registration (DL-DIR) has demonstrated improved accuracy compared to time-consuming non-DL methods across various anatomical sites. However, DL-DIR is still challenging in heterogeneous tissue regions with large deformation. In fact, several state-of-the-art DL-DIR methods fail to capture the large, anatomically plausible deformation when tested on head-and-neck computed tomography (CT) images. These results allude to the possibility that such complex head-and-neck deformation may be beyond the capacity of a single network structure or a homogeneous smoothness regularization. To address the challenge of combined multi-scale musculoskeletal motion and soft tissue deformation in the head-and-neck region, we propose a MUsculo-Skeleton-Aware (MUSA) framework to anatomically guide DL-DIR by leveraging the explicit multiresolution strategy and the inhomogeneous deformation constraints between the bony structures and soft tissue. The proposed method decomposes the complex deformation into a bulk posture change and residual fine deformation. It can accommodate both inter- and intra- subject registration. Our results show that the MUSA framework can consistently improve registration accuracy and, more importantly, the plausibility of deformation for various network architectures. The code will be publicly available at https://github.com/HengjieLiu/ DIR-MUSA.
引用
收藏
页数:30
相关论文
共 118 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Biomechanical-based image registration for head and neck radiation treatment
    Al-Mayah, Adil
    Moseley, Joanne
    Hunter, Shannon
    Velec, Mike
    Chau, Lily
    Breen, Stephen
    Brock, Kristy
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (21) : 6491 - 6500
  • [3] Deformable image registration by multi-objective optimization using a dual-dynamic transformation model to account for large anatomical differences
    Alderliesten, Tanja
    Sonke, Jan-Jakob
    Bosman, Peter A. N.
    [J]. MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [4] Biomechanical musculoskeletal models of the cervical spine: A systematic literature review
    Alizadeh, Mina
    Knapik, Gregory G.
    Mageswaran, Prasath
    Mendel, Ehud
    Bourekas, Eric
    Marras, William S.
    [J]. CLINICAL BIOMECHANICS, 2020, 71 : 115 - 124
  • [5] Randomized Phase III Trial of Concurrent Accelerated Radiation Plus Cisplatin With or Without Cetuximab for Stage III to IV Head and Neck Carcinoma: RTOG 0522
    Ang, K. Kian
    Zhang, Qiang
    Rosenthal, David I.
    Nguyen-Tan, Phuc Felix
    Sherman, Eric J.
    Weber, Randal S.
    Galvin, James M.
    Bonner, James A.
    Harris, Jonathan
    El-Naggar, Adel K.
    Gillison, Maura L.
    Jordan, Richard C.
    Konski, Andre A.
    Thorstad, Wade L.
    Trotti, Andy
    Beitler, Jonathan J.
    Garden, Adam S.
    Spanos, William J.
    Yom, Sue S.
    Axelrod, Rita S.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (27) : 2940 - +
  • [6] When to use the Bonferroni correction
    Armstrong, Richard A.
    [J]. OPHTHALMIC AND PHYSIOLOGICAL OPTICS, 2014, 34 (05) : 502 - 508
  • [7] Arsigny V, 2006, LECT NOTES COMPUT SC, V4190, P924
  • [8] MULTIRESOLUTION ELASTIC MATCHING
    BAJCSY, R
    KOVACIC, S
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 46 (01): : 1 - 21
  • [9] VoxelMorph: A Learning Framework for Deformable Medical Image Registration
    Balakrishnan, Guha
    Zhao, Amy
    Sabuncu, Mert R.
    Guttag, John
    Dalca, Adrian, V
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1788 - 1800
  • [10] Beichel RR, 2015, Data From QIN-HEADNECK