Principal component analysis of absorbing state phase transitions

被引:0
作者
Muzzi, Cristiano [1 ,2 ]
Cortes, Ronald Santiago [1 ,3 ]
Bhakuni, Devendra Singh [3 ]
Jelic, Asja [3 ]
Gambassi, Andrea [1 ,2 ]
Dalmonte, Marcello [3 ]
Verdel, Roberto [3 ]
机构
[1] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, via Valerio 2, I-34127 Trieste, Italy
[3] ICTP Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
关键词
RENORMALIZATION-GROUP; UNIVERSALITY CLASS; CRITICAL EXPONENTS; PERCOLATION; BEHAVIOR; SYSTEMS; MODELS;
D O I
10.1103/PhysRevE.110.064121
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a principal component analysis (PCA) of two one-dimensional lattice models belonging to distinct nonequilibrium universality classes-directed bond percolation and branching and annihilating random walks with an even number of offspring. We find that the uncentered PCA of data sets storing various system's configurations can be successfully used to determine the critical properties of these nonequilibrium phase transitions. In particular, in both cases, we obtain good estimates of the critical point and the dynamical critical exponent of the models. For directed bond percolation, we are furthermore able to extract critical exponents associated with the correlation length and the order parameter. We discuss the relation of our analysis with low-rank approximations of data sets.
引用
收藏
页数:17
相关论文
共 86 条
  • [1] Wilson K. G., The renormalization group and critical phenomena, Rev. Mod. Phys, 55, (1983)
  • [2] Fisher M. E., Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys, 70, (1998)
  • [3] Cardy J., Scaling and Renormalization in Statistical Physics, 5, (1996)
  • [4] Goldenfeld N., Lectures on Phase Transitions and the Renormalization Group, (2018)
  • [5] Hohenberg P. C., Halperin B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys, 49, (1977)
  • [6] Tauber U. C., Critical Dynamics: A Field Theory Approach to Equilibrium and Non-equilibrium Scaling Behavior, (2014)
  • [7] Zia R. K. P., Schmittmann B., Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states, J. Stat. Mech, 2007
  • [8] Hinrichsen H., Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys, 49, (2000)
  • [9] Odor G., Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys, 76, (2004)
  • [10] Marro J., Dickman R., Nonequilibrium Phase Transitions in Lattice Models, (2005)