Automatic Acne Detection Model Based on Improved YOLOv7

被引:0
|
作者
Zhang, Delong [1 ]
Jin, Chunyang [1 ]
Zhang, Zhidong [1 ]
Cao, Xiyuan [1 ]
Xue, Chenyang [1 ]
机构
[1] North Univ China, Key Lab Instrumentat Sci & Dynam Measurement, Minist Educ, Taiyuan 030051, Shanxi, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Neck; Training; Location awareness; Data mining; Accuracy; Solid modeling; Robustness; Manuals; Head; Acne detection; deep learning; object detection; YOLOv7; EPIDEMIOLOGY;
D O I
10.1109/ACCESS.2024.3520641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Acne is a common skin disease typically diagnosed visually by dermatologists, involving manual localization and labeling. Instead of conventional manual marking, automated acne diagnosis can save medical time and avoid cross-contamination. This paper presents a new automatic detection model for acne based on improved YOLOv7. Specifically, the ELAN module in backbone is improved to enhance feature extraction functionality. Meanwhile, We added the EPSA module in Backbone to extract the multi-scale spatial feature information more effectively. And the concat node of Neck layer is adjusted to strengthen the feature fusion capability, thus improving the accuracy of target detection. Moreover, the activation function is replaced with ELU to improve the robustness of the model. Finally, the initial anchor boxes of YOLOv7 are adjusted by the K-Means algorithm to make the model more suitable for acne detection. We conducted our experiments using the publicly available ACNE04 dataset to train the model. The experimental results demonstrate the robust detection capabilities of the model, achieving an mean average accuracy(mAP) of 83.7% in acne detection. The mAP is 4.57% higher than the initial model and better than the general object detection model. This model holds promise for effectively managing patient health status and providing valuable assistance to physicians in the diagnostic process.
引用
收藏
页码:194390 / 194398
页数:9
相关论文
共 50 条
  • [41] Recognition of tea buds based on an improved YOLOv7 model
    Song, Mengxue
    Liu, Ce
    Chen, Liqing
    Liu, Lichao
    Ning, Jingming
    Yu, Chuanyang
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2024, 17 (06) : 238 - 244
  • [42] Improved YOLOv7 model for underwater sonar image object detection
    Qin, Ken Sinkou
    Liu, Di
    Wang, Fei
    Zhou, Jingchun
    Yang, Jiaxuan
    Zhang, Weishi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [43] Automatic Detection Strategy of Multi-Scale Catenary Support Device Based on Improved YOLOv7
    Jiang, Dongzhu
    Liu, Keyan
    Jia, Limin
    Qin, Yong
    Jiang, Yaopeng
    Wang, Zhipeng
    IFAC PAPERSONLINE, 2023, 56 (02): : 7597 - 7602
  • [44] Tea Buds Detection in Complex Background Based on Improved YOLOv7
    Meng, Junquan
    Kang, Feng
    Wang, Yaxiong
    Tong, Siyuan
    Zhang, Chenxi
    Chen, Chongchong
    IEEE ACCESS, 2023, 11 : 88295 - 88304
  • [45] Detection Algorithm of Laboratory Personnel Irregularities Based on Improved YOLOv7
    Yang, Yongliang
    Xu, Linghua
    Luo, Maolin
    Wang, Xiao
    Cao, Min
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (02): : 2741 - 2765
  • [46] A detection method for dead caged hens based on improved YOLOv7
    Yang, Jikang
    Zhang, Tiemin
    Fang, Cheng
    Zheng, Haikun
    Ma, Chuang
    Wu, Zhenlong
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 226
  • [47] Pedestrian Detection Method in Infrared Image Based on Improved YOLOv7
    Liu, Zhengyan
    Dai, Chaoyue
    Li, Xu
    Proceedings of 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2023, 2023, : 946 - 954
  • [48] An Apricot Detection Algorithm in Complex Environments Based on Improved YOLOv7
    Guo, Qiang
    Ma, Chi
    Hu, Hui
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2135 - 2144
  • [49] Improved YOLOv7 Underwater Object Detection Based on Attention Mechanism
    Fu, Junshang
    Tian, Ying
    ENGINEERING LETTERS, 2024, 32 (07) : 1377 - 1384
  • [50] Detection of Famous Tea Buds Based on Improved YOLOv7 Network
    Wang, Yongwei
    Xiao, Maohua
    Wang, Shu
    Jiang, Qing
    Wang, Xiaochan
    Zhang, Yongnian
    AGRICULTURE-BASEL, 2023, 13 (06):