Automatic Acne Detection Model Based on Improved YOLOv7

被引:0
|
作者
Zhang, Delong [1 ]
Jin, Chunyang [1 ]
Zhang, Zhidong [1 ]
Cao, Xiyuan [1 ]
Xue, Chenyang [1 ]
机构
[1] North Univ China, Key Lab Instrumentat Sci & Dynam Measurement, Minist Educ, Taiyuan 030051, Shanxi, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Neck; Training; Location awareness; Data mining; Accuracy; Solid modeling; Robustness; Manuals; Head; Acne detection; deep learning; object detection; YOLOv7; EPIDEMIOLOGY;
D O I
10.1109/ACCESS.2024.3520641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Acne is a common skin disease typically diagnosed visually by dermatologists, involving manual localization and labeling. Instead of conventional manual marking, automated acne diagnosis can save medical time and avoid cross-contamination. This paper presents a new automatic detection model for acne based on improved YOLOv7. Specifically, the ELAN module in backbone is improved to enhance feature extraction functionality. Meanwhile, We added the EPSA module in Backbone to extract the multi-scale spatial feature information more effectively. And the concat node of Neck layer is adjusted to strengthen the feature fusion capability, thus improving the accuracy of target detection. Moreover, the activation function is replaced with ELU to improve the robustness of the model. Finally, the initial anchor boxes of YOLOv7 are adjusted by the K-Means algorithm to make the model more suitable for acne detection. We conducted our experiments using the publicly available ACNE04 dataset to train the model. The experimental results demonstrate the robust detection capabilities of the model, achieving an mean average accuracy(mAP) of 83.7% in acne detection. The mAP is 4.57% higher than the initial model and better than the general object detection model. This model holds promise for effectively managing patient health status and providing valuable assistance to physicians in the diagnostic process.
引用
收藏
页码:194390 / 194398
页数:9
相关论文
共 50 条
  • [21] Road Pothole Detection Based on Improved YOLOv7
    Ma, Ronggui
    Wang, Jianyu
    Huang, Xunyan
    Zhao, Lulu
    Xu, Meiyu
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 190 - 195
  • [22] A lightweight road crack detection algorithm based on improved YOLOv7 model
    He, Junjie
    Wang, Yanchao
    Wang, Yiting
    Li, Run
    Zhang, Dawei
    Zheng, Zhonglong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 847 - 860
  • [23] Night target detection algorithm based on improved YOLOv7
    Bowen, Zheng
    Huacai, Lu
    Shengbo, Zhu
    Xinqiang, Chen
    Hongwei, Xing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Mask wearing detection algorithm based on improved YOLOv7
    Luo, Fang
    Zhang, Yin
    Xu, Lunhui
    Zhang, Zhiliang
    Li, Ming
    Zhang, Weixiong
    MEASUREMENT & CONTROL, 2024, 57 (06): : 751 - 762
  • [25] Rail Surface Defect Detection Based on Improved YOLOv7
    Chen, Renxiang
    Pan, Sheng
    Yang, Lixia
    Gao, Xiaopeng
    Wang, Jianxi
    Journal of Railway Engineering Society, 41 (07): : 18 - 24
  • [26] FOREST FIRE DETECTION BASED ON IMPROVED YOLOV7 MODELING
    Yang, Q.
    Zhang, T.
    Tong, X.
    Hu, L. H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2024, 22 (04): : 3123 - 3136
  • [27] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448
  • [28] Steel Surface Defect Detection Based on Improved YOLOv7
    Li, Ming
    Wei, Lisheng
    Zheng, Bowen
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024, 2024, : 51 - 55
  • [29] STRIP SURFACE DEFECT DETECTION BASED ON IMPROVED YOLOV7
    Wu, Huixin
    Chen, Kaiyuan
    Ni, Mengqi
    Ma, Lin
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1493 - 1507
  • [30] Mine Personnel Detection Algorithm Based on Improved YOLOv7
    Shao X.
    Li X.
    Yang Y.
    Yuan Z.
    Yang T.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (03): : 414 - 423