Effects of surface roughness on mechanical properties of laser-cladding additively manufactured 316L stainless steel sheets

被引:0
|
作者
Kang, Lan [1 ,2 ]
Jin, Jufei [2 ]
Liu, Xinpei [3 ]
Chen, Haizhou [4 ]
机构
[1] South China Univ Technol, State Key Lab Subtrop Bldg & Urban Sci, Guangzhou 510641, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Guangdong, Peoples R China
[3] UNSW Sydney, Ctr Infrastruct Engn & Safety, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[4] China Construct Eighth Engn Div Co Ltd, Shanghai 200120, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser-cladding; Additive manufacturing; Surface roughness; Geometrical irregularities; Mechanical properties; FRACTURE-BEHAVIOR; FATIGUE; REPAIR;
D O I
10.1016/j.jcsr.2024.109136
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Laser-cladding (LC) additive manufacturing technology can be applied to repair local damage in steel structures. However, the process creates a distinctive surface morphology due to the overlap of weld beads on the repair surface, resulting in noticeable pit defects between adjacent weld beads. Under specific load conditions, these defects, or saying surface roughness, may cause significant stress concentration in localised areas of LC additively manufactured sheets. This stress concentration could adversely impact the mechanical properties of the LC additively manufactured sheets, including their stiffness, strength and ductility. This paper addresses this issue by testing smooth and rough surface tensile coupon specimens with different thicknesses produced by lasercladding additive manufacturing technology. The rough surface specimens were geometrically characterised in detail by using 3D scanning technique, and the thickness distribution characteristics of the rough surface specimens were analysed based on the 3D scanning results. Tensile tests were then conducted on both smooth and rough surface specimens of different thicknesses, revealing that surface roughness indeed adversely affects the mechanical parameters of the LC sheets. The degree of degradation was also found to be related to the thickness of the specimens. Accordingly, a correlation analysis was performed among the degree of degradation, surface roughness and specimen thickness. Empirical formulae were proposed to predict the degree of degradation in the mechanical properties of the LC sheets due to surface roughness based on the results of the correlation analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Mechanical properties and microstructure of laser-cladding additively manufactured 316L stainless steel sheets
    Kang, Lan
    Chen, Feng
    Wu, Bin
    Liu, Xinpei
    Ge, Hanbin
    Journal of Constructional Steel Research, 2022, 199
  • [2] Mechanical properties and microstructure of laser-cladding additively manufactured 316L stainless steel sheets
    Kang, Lan
    Chen, Feng
    Wu, Bin
    Liu, Xinpei
    Ge, Hanbin
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2022, 199
  • [3] Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness
    Solberg, Klas
    Guan, Shuai
    Razavi, Nima
    Welo, Torgeir
    Chan, Kang Cheung
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (09) : 2043 - 2052
  • [4] Influence of printing posture on forming morphology and mechanical properties of laser-cladding additively manufactured steel sheets
    Kang, Lan
    Li, Bochen
    Liu, Xinpei
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2025, 228
  • [5] Microstructure and mechanical properties relationship of additively manufactured 316L stainless steel by selective laser melting
    Puichaud, Anne-Helene
    Flament, Camille
    Chniouel, Aziz
    Lomello, Fernando
    Rouesne, Elodie
    Giroux, Pierre-Francois
    Maskrot, Hicham
    Schuster, Frederic
    Bechade, Jean-Luc
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2019, 5
  • [6] Mechanical performance of additively manufactured austenitic 316L stainless steel
    Kim, Kyu-Tae
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (01) : 244 - 254
  • [7] THE MECHANICAL PERFORMANCE OF ADDITIVELY MANUFACTURED 316L AUSTENITIC STAINLESS STEEL
    Wisbey, Andrew
    Coon, David
    Chatterton, Mark
    Barras, Josh
    Guo, Da
    Yan, Kun
    Callaghan, Mark
    Mirihanage, Wajira
    PROCEEDINGS OF ASME 2022 PRESSURE VESSELS AND PIPING CONFERENCE, PVP2022, VOL 4A, 2022,
  • [8] Mechanical and Corrosion Performance of Additively Manufactured Stainless Steel 316L
    Zharkynbekova, Guldariya
    Yuldasheva, Dilnaz
    Ospanov, Alan
    Talamona, Didier
    Perveen, Asma
    2024 15TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES, ICMIMT 2024, 2024, : 154 - 158
  • [9] Experimental study of mechanical properties of laser additively manufactured 316L stainless steels
    Kang, Lan
    Chen, Feng
    Bradford, Mark A.
    Liu, Xinpei
    STRUCTURES, 2023, 54 : 221 - 235
  • [10] Effects of Heat Treatment on Additively Manufactured 316L Stainless Steel
    Burdova, Karolina
    Jirkova, Hana
    Kucerova, Ludmila
    Zetkova, Ivana
    Mach, Josef
    MANUFACTURING TECHNOLOGY, 2022, 22 (03): : 261 - 266