Machine learning-assisted design of high-performance perovskite photodetectors: a review

被引:1
作者
Li, Xiaohui [1 ]
Mai, Yongxiang [1 ]
Lan, Chunfeng [2 ]
Yang, Fu [3 ]
Zhang, Putao [1 ]
Li, Shengjun [1 ]
机构
[1] Henan Univ, Henan Key Lab Quantum Mat & Quantum Energy, Kaifeng 475004, Henan, Peoples R China
[2] Shenzhen Polytech Univ, BYD Inst Appl Technol, Sch Automot & Transportat Engn, Shenzhen 518055, Peoples R China
[3] Soochow Univ, Coll Chem, Lab Adv Optoelect Mat, Suzhou Key Lab Novel Semicond Optoelect Mat & Devi, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite photodetector; Machine learning; Optoelectronic devices; High-performance materials; Material design and optimization; SOLAR-CELLS; HALIDE PEROVSKITES; CHEMICAL UNIVERSE; LEAD HALIDE; LIGHT; EFFICIENT; BAND; PHOTODIODES; HETEROSTRUCTURES; OPPORTUNITIES;
D O I
10.1007/s42114-024-01113-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photodetectors (PDs) based on perovskite materials have become a strong contender for next-generation optical sensing. Because it has the advantages of high photoelectric conversion efficiency, broad spectral response, low cost, and easy preparation, it has a promising application in the field of optoelectronics. Machine learning (ML) is a branch of artificial intelligence that enables computer systems to improve performance from data through algorithms and statistical models automatically. Recently, it has been used in performance prediction and material screening of optoelectronic devices. As a result, combining ML and perovskite PDs has received much attention to optimize manufacturing processes and reduce processing costs. In this review, we provide a comprehensive review of recent research advances in the use of ML for perovskite devices, analyze the application of different types of perovskite materials in PDs, and discuss the feasibility and challenges of applying ML in perovskite PDs. This review outlines a visionary perspective and a roadmap for the progression of perovskite PDs towards unparalleled performance benchmarks, offering insights into the future trajectory of this promising technology.
引用
收藏
页数:18
相关论文
共 148 条
[1]  
Abadi M., 2016, arXiv, DOI [DOI 10.48550/ARXIV.1603.04467, 10.48550/arxiv.1603.04467]
[2]   Topological feature engineering for machine learning based halide perovskite materials design [J].
Anand, D. Vijay ;
Xu, Qiang ;
Wee, JunJie ;
Xia, Kelin ;
Sum, Tze Chien .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[3]   Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes [J].
Armin, Ardalan ;
Jansen-van Vuuren, Ross D. ;
Kopidakis, Nikos ;
Burn, Paul L. ;
Meredith, Paul .
NATURE COMMUNICATIONS, 2015, 6
[4]   Organic Light Detectors: Photodiodes and Phototransistors [J].
Baeg, Kang-Jun ;
Binda, Maddalena ;
Natali, Dario ;
Caironi, Mario ;
Noh, Yong-Young .
ADVANCED MATERIALS, 2013, 25 (31) :4267-4295
[5]   High Performance and Stable All-Inorganic Metal Halide Perovskite-Based Photodetectors for Optical Communication Applications [J].
Bao, Chunxiong ;
Yang, Jie ;
Bai, Sai ;
Xu, Weidong ;
Yan, Zhibo ;
Xu, Qingyu ;
Liu, Junming ;
Zhang, Wenjing ;
Gao, Feng .
ADVANCED MATERIALS, 2018, 30 (38)
[6]   THE INORGANIC CRYSTAL-STRUCTURE DATA-BASE [J].
BERGERHOFF, G ;
HUNDT, R ;
SIEVERS, R ;
BROWN, ID .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1983, 23 (02) :66-69
[7]   Ensembles for feature selection: A review and future trends [J].
Bolon-Canedo, Veronica ;
Alonso-Betanzos, Amparo .
INFORMATION FUSION, 2019, 52 :1-12
[8]   Benchmark of filter methods for feature selection in high-dimensional gene expression survival data [J].
Bommert, Andrea ;
Welchowski, Thomas ;
Schmid, Matthias ;
Rahnenfuehrer, Joerg .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
[9]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[10]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555