Distributed PageRank computation with link failures

被引:0
作者
Ishii H. [1 ]
Tempo R. [2 ]
机构
[1] Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502
[2] Politecnico di Torino, IEIIT-CNR, Torino 10129
来源
Lecture Notes in Control and Information Sciences | 2010年 / 398卷
关键词
D O I
10.1007/978-3-540-93918-4_13
中图分类号
学科分类号
摘要
The Google search engine employs the so-called PageRank algorithm to rank the search results by quantifying the importance of each web page. In this paper, we continue our recent work on distributed randomized computation of PageRank, where the pages locally determine their values by communicating with linked pages. In particular, we propose a distributed randomized algorithm with limited information, where only part of the linked pages is required to be contacted. This is useful to enhance flexibility and robustness in computation and communication. © 2010 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:139 / 150
页数:11
相关论文
共 25 条
[1]  
Avrachenkov K., Litvak N., Nemirovsky D., Osipova N., Monte Carlo methods in PageRank computation: When one iteration is sufficient, SIAMJ. Numer. Anal., 45, pp. 890-904, (2007)
[2]  
Bertsekas D.P., Tsitsiklis J.N., Parallel and Distributed Computation: Numerical Methods, (1989)
[3]  
Brin S., Page L., The anatomy of a large-scale hypertextual Web search engine, Computer Networks & ISDN Systems, 30, pp. 107-117, (1998)
[4]  
Bryan K., Leise T., The $25, 000, 000,000 eigenvector: The linear algebra behind Google, SIAM Rev., 48, pp. 569-581, (2006)
[5]  
Cogburn R., On products of random stochastic matrices, Contemp. Math., 50, pp. 199-213, (1986)
[6]  
De Jager D.V., Bradley J.T., Asynchronous iterative solution for state-based performance metrics, Proc. ACM SIGMETRICS, pp. 373-374, (2007)
[7]  
Elia N., Remote stabilization over fading channels, Systems & Control Letters, 54, pp. 238-249, (2005)
[8]  
Fagnani F., Zampieri S., Average consensus with packet drop communication, SIAM J. Control and Optim., 48, pp. 102-133, (2009)
[9]  
Hatano Y., Mesbahi M., Agreement over random networks, IEEE Trans. Autom. Control, 50, pp. 1867-1872, (2005)
[10]  
Horn R.A., Johnson C.R., Matrix Analysis, (1985)