Unveiling hidden biases in machine learning feature importance

被引:1
作者
Takefuji, Yoshiyasu [1 ]
机构
[1] Musashino Univ, Fac Data Sci, 3-3-3 Ariake,Koto Ku, Tokyo 1358181, Japan
来源
JOURNAL OF ENERGY CHEMISTRY | 2025年 / 102卷
关键词
Machine learning; Feature importance; Potential bias; Chi-squared and P-value;
D O I
10.1016/j.jechem.2024.10.032
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
引用
收藏
页码:49 / 51
页数:3
相关论文
共 9 条
  • [1] Are Multi-Language Design Smells Fault-Prone? An Empirical Study
    Abidi, Mouna
    Rahman, Md Saidur
    Openja, Moses
    Khomh, Foutse
    [J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, 2021, 30 (03)
  • [3] Robust tests for combining p-values under arbitrary dependency structures
    Chen, Zhongxue
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Explainable and interpretable artificial intelligence in medicine: a systematic bibliometric review
    Frasca M.
    La Torre D.
    Pravettoni G.
    Cutica I.
    [J]. Discov. Artif. Intell., 2024, 1 (1):
  • [5] Interpretability and Explainability of Machine Learning Models: Achievements and Challenges
    Henriques, J.
    Rocha, T.
    de Carvalho, P.
    Silva, C.
    Paredes, S.
    [J]. INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2022, ICBHI 2022, 2024, 108 : 81 - 94
  • [6] Flexible Memristive Organic Solar Cell Using Multilayer 2D Titanium Carbide MXene Electrodes
    Nirmal, Kiran A.
    Ren, Wanqi
    Khot, Atul C.
    Kang, Dae Yun
    Dongale, Tukaram D.
    Kim, Tae Geun
    [J]. ADVANCED SCIENCE, 2023, 10 (19)
  • [7] Comparison of feature importance measures as explanations for classification models
    Saarela, Mirka
    Jauhiainen, Susanne
    [J]. SN APPLIED SCIENCES, 2021, 3 (02):
  • [8] Machine Learning: Algorithms, Real-World Applications and Research Directions
    Sarker I.H.
    [J]. SN Computer Science, 2021, 2 (3)
  • [9] Feature selection techniques for machine learning: a survey of more than two decades of research
    Theng, Dipti
    Bhoyar, Kishor K.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (03) : 1575 - 1637