Retrieving aerosol single scattering albedo from FY-3D observations combining machine learning with radiative transfer model

被引:1
作者
Wang, Qingxin [1 ]
Li, Siwei [2 ,3 ]
Zhang, Zhaoyang [1 ]
Lin, Xingwen [1 ]
Shuai, Yanmin [1 ]
Liu, Xinyan [4 ]
Lin, Hao [5 ]
机构
[1] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Hubei Key Lab Quantitat Remote Sensing Land & Atmo, Wuhan 430079, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[4] Henan Acad Sci, Aerosp Informat Res Inst, Zhengzhou 450046, Peoples R China
[5] Xinyang Normal Univ, Coll Geog Sci, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Single scattering albedo; FY-3D; Machine learning; Radiative transfer model; SATELLITE; ALGORITHM;
D O I
10.1016/j.atmosres.2024.107884
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study proposed a new method to retrieve aerosol single scattering albedo (SSA) over land for the Medium Resolution Spectral Imager-II (MERSI-II) onboard the Fengyun-3D (FY-3D). Considering both accuracy and retrieval efficiency, the method combines machine learning with an aerosol optical model constructed from mixed aerosol components. A sample dataset, containing 4 bands of apparent reflectance simulated by the radiative transfer model and corresponding geometric conditions, aerosol and land surface information, is constructed for training and validating machine learning models. Three Back Propagation Neural Network (BPNN) SSA retrieval models are built based on the theoretical basis of SSA retrieval, and the sensitivity of SSA retrieval accuracy to input parameter errors is analyzed. The results show that BPNN-based SSA retrieval models can replace the iterative optimal solution process to a certain extent, achieving quick retrieval of satellite SSA. The BPNN SSA retrieval models are applied to FY-3D MERSI-II observations and validated using AERONET SSA products. The results indicate that the BPNN SSA retrieval model, which uses solar zenith angle, satellite zenith angle, relative azimuth angle, aerosol optical depth (AOD), surface altitude, bi-directional reflectance distribution function (BRDF) parameters (bands 1-2), and apparent reflectance (bands 1-4) as inputs, performs better than others. The retrievals show good consistency with AERONET SSA products with a correlation coefficient of approximately 0.5 and a root mean square error (RMSE) of 0.045 (0.034) at 470 nm (550 nm). In addition, more than 66 % of the SSA retrievals are within the expected error of +/- 0.05.
引用
收藏
页数:14
相关论文
共 42 条
[1]   A Two-Stage Machine Learning Algorithm for Retrieving Multiple Aerosol Properties Over Land: Development and Validation [J].
Cao, Mengdan ;
Zhang, Ming ;
Su, Xin ;
Wang, Lunche .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[2]   Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network [J].
Che, Huizheng ;
Xia, Xiangao ;
Zhao, Hujia ;
Dubovik, Oleg ;
Holben, Brent N. ;
Goloub, Philippe ;
Cuevas-Agullo, Emilio ;
Estelles, Victor ;
Wang, Yaqiang ;
Zhu, Jun ;
Qi, Bing ;
Gong, Wei ;
Yang, Honglong ;
Zhang, Renjian ;
Yang, Leiku ;
Chen, Jing ;
Wang, Hong ;
Zheng, Yu ;
Gui, Ke ;
Zhang, Xiaochun ;
Zhang, Xiaoye .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (18) :11843-11864
[3]   Neural Network AEROsol Retrieval for Geostationary Satellite (NNAeroG) Based on Temporal, Spatial and Spectral Measurements [J].
Chen, Xingfeng ;
Zhao, Limin ;
Zheng, Fengjie ;
Li, Jiaguo ;
Li, Lei ;
Ding, Haonan ;
Zhang, Kainan ;
Liu, Shumin ;
Li, Donghui ;
de Leeuw, Gerrit .
REMOTE SENSING, 2022, 14 (04)
[4]   Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method [J].
Chen, Xingfeng ;
de Leeuw, Gerrit ;
Arola, Antti ;
Liu, Shumin ;
Liu, Yang ;
Li, Zhengqiang ;
Zhang, Kainan .
REMOTE SENSING OF ENVIRONMENT, 2020, 249
[5]   Retrieval of aerosol single scattering albedo using joint satellite and surface visibility measurements [J].
Dong, Yueming ;
Li, Jing ;
Yan, Xing ;
Li, Chong ;
Jiang, Zhongjing ;
Xiong, Changrui ;
Chang, Liang ;
Zhang, Lu ;
Ying, Tong ;
Zhang, Zhenyu ;
Wang, Menghua .
REMOTE SENSING OF ENVIRONMENT, 2023, 294
[6]   Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations [J].
Dubovik, O. ;
Herman, M. ;
Holdak, A. ;
Lapyonok, T. ;
Tanre, D. ;
Deuze, J. L. ;
Ducos, F. ;
Sinyuk, A. ;
Lopatin, A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (05) :975-1018
[7]   Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua [J].
Filonchyk, Mikalai ;
Hurynovich, Volha ;
Yan, Haowen .
GEOSCIENCE FRONTIERS, 2020, 11 (06) :2169-2181
[8]   Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018) [J].
Hammer, Melanie S. ;
van Donkelaar, Aaron ;
Li, Chi ;
Lyapustin, Alexei ;
Sayer, Andrew M. ;
Hsu, N. Christina ;
Levy, Robert C. ;
Garay, Michael J. ;
Kalashnikova, Olga, V ;
Kahn, Ralph A. ;
Brauer, Michael ;
Apte, Joshua S. ;
Henze, Daven K. ;
Zhang, Li ;
Zhang, Qiang ;
Ford, Bonne ;
Pierce, Jeffrey R. ;
Martin, Randall, V .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (13) :7879-7890
[9]   An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations [J].
Jeong, U. ;
Kim, J. ;
Ahn, C. ;
Torres, O. ;
Liu, X. ;
Bhartia, P. K. ;
Spurr, R. J. D. ;
Haffner, D. ;
Chance, K. ;
Holben, B. N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (01) :177-193
[10]   Satellite Aerosol Retrieval Using Scene Simulation and Deep Belief Network [J].
Jia, Chen ;
Sun, Lin ;
Chen, Yunfang ;
Liu, Qinhuo ;
Yu, Huiyong ;
Zhang, Wenhua .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60