SiO2/C double-layer-coated SiO as a high-performance anode for lithium-ion batteries

被引:0
作者
Li, Qian [1 ]
Li, Changlin [1 ]
Wang, Shuoran [1 ]
Huang, Na [1 ]
Wang, Wenpei [1 ]
He, Xihong [1 ]
Du, Jinjing [1 ]
Ma, Hongzhou [1 ]
Weng, Yaqing [2 ]
机构
[1] Xian Univ Architecture & Technol, Sch Met Engn, Xian 710055, Shaanxi, Peoples R China
[2] Jiangxi Acad Sci, Inst Appl Chem, Nanchang 330012, Jiangxi, Peoples R China
关键词
Silicon monoxide; Double-layer core-shell structure; Lithium-ion battery; Composite materials; Carbon materials;
D O I
10.1016/j.matlet.2024.137650
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon monoxide (SiO) has a high theoretical capacity as an anode for lithium-ion batteries, but its poor conductivity and bulk effect can cause the capacity to plummet. The combination of SiO and other materials to form a core-shell mechanism on the surface of SiO can effectively alleviate these problems. In this work, a silicon dioxide (SiO2)/carbon (C) bilayer core-shell structure coated on SiO anode material was designed and synthesized to address the issues inherent in core-shell structures. When the temperature was 900 degrees C, SiO@SiO2@C exhibited an excellent reversible capacity of 2500.08 mAh center dot g- 1 and a first coulombic efficiency of 75.92 %. After 100 charge/discharge cycles, it still retained 1298.25 mAh center dot g- 1 of its capacity. Compared with those of pure SiO, its cycling stability and capacity retention are significantly improved, providing a new approach for anode materials in lithium-ion batteries.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Improving anode performances of lithium-ion capacitors employing carbon-Si composites [J].
An, Ya-Bin ;
Chen, Si ;
Zou, Min-Min ;
Geng, Lin-Bin ;
Sun, Xian-Zhong ;
Zhang, Xiong ;
Wang, Kai ;
Ma, Yan-Wei .
RARE METALS, 2019, 38 (12) :1113-1123
[3]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]  
Cheng H, 2021, J ENERGY CHEM, V57, P451, DOI [10.1016/j.jechem.2020.08.056, 10.1016/j.jechem.2020.08.0562095-4956/]
[6]   Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review [J].
Duan, Jian ;
Tang, Xuan ;
Dai, Haifeng ;
Yang, Ying ;
Wu, Wangyan ;
Wei, Xuezhe ;
Huang, Yunhui .
ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (01) :1-42
[7]   Supercritical-Assisted Ball-Milling Synthesis of Multicomponent Si/Fe3O4/C Composites for Outstanding Lithium-Storage Capability [J].
Hu, Liuyi ;
Lu, Zhihang ;
Chen, Fei ;
Zhang, Jun ;
Xia, Yang ;
Zhang, Wenkui ;
Gan, Yongping ;
He, Xinping ;
Song, Wenlong ;
Huang, Hui .
ENERGY & FUELS, 2023, 37 (11) :8042-8050
[8]   Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2 [J].
Huang, Junda ;
Wei, Zengxi ;
Liao, Jiaqin ;
Ni, Wei ;
Wang, Caiyun ;
Ma, Jianmin .
JOURNAL OF ENERGY CHEMISTRY, 2019, 33 :100-124
[9]  
Larcher D, 2015, NAT CHEM, V7, P19, DOI [10.1038/NCHEM.2085, 10.1038/nchem.2085]
[10]   Recent Progress on Multifunctional Electrolyte Additives for High-Energy-Density Li Batteries - A Review [J].
Lei, Yue ;
Wang, Kaifeng ;
Jiang, Sen ;
Xu, Xin ;
Zheng, Junzi ;
Yin, Junying ;
Gao, Yunfang .
CHEMELECTROCHEM, 2024, 11 (14)