Poly(methyl acrylate) plus mesoporous silica nanohybrids: Mechanical and thermophysical properties

被引:0
作者
Grupo Ciencia de Los Materiales, Institute de Quimica, Universidad de Antioquia, A.A. 1226, Medellin, Colombia [1 ]
不详 [2 ]
机构
[1] Grupo Ciencia de Los Materiales, Institute de Quimica, Universidad de Antioquia, Medellin
[2] Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Departement of Materials Science and Engineering, University of North Texas, Denton, TX 76203-5310
关键词
Mechanical properties; Mesoporous silica; Nanohybrid; Poly(methyl acrylate); Thermophysical properties;
D O I
10.1515/epoly.2007.7.1.324
中图分类号
学科分类号
摘要
A mesoporous silica MCM-48 is used as a reinforcement agent for poly(methyl acrylate) (PMA). Methyl acrylate is introduced into the mesoporous silica that has an interconnected porous structure, allowing monomer diffusion into the pores before the polymerization reaction. In order to improve the silica plus polymer adhesion and to decrease the silica agglomeration, the silanol groups of the silica are functionalized with methyl groups without decreasing significantly the pore size. The silica is characterized by nitrogen adsorption, scanning electronic microscopy (SEM) and infrared (IR) spectroscopy. The nanohybrids so obtained are analyzed by tensile testing, thermogravimetry (TGA), differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). The highest improvement of mechanical and thermophysical properties is achieved for nanohybrids containing 5 wt. % mesoporous silica. At 10 % silica, agglomeration of the filler takes place and the dispersed phase is less effective in reinforcing the polymer matrix.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 42 条
[1]  
Moller K., Bein T., Fischer R.X., Chem. Mater, 10, (1998)
[2]  
Shaffer M.S.P., Windle A.M., Adv. Mater, 11, (1999)
[3]  
Performance of Plastics, (2000)
[4]  
Sandler J., Shaffer M.S.P., Lam J.-M., Windle A.H., Werner P., Altstadt V., Nastalczyk J., Broza G., Schulte K., Keun C.-A., Mater. Res. Soc. Proc, (2001)
[5]  
Thostenson E.T., Ren Z.F., Chou T.W., Comp. Sci. & Tech, 61, (2001)
[6]  
Roslaniec Z., Broza G., Schulte K., Composite Interfaces, 10, (2003)
[7]  
Sandler J., Werner P., Shaffer M.S.P., Demchuk V., Altstadt V., Windle A.H., Composites A, 33, (2002)
[8]  
Sandler J., Windle A.H., Werner P., Altstadt V., van Es M., Shaffer M.S.P., J. Mater. Sci, 38, (2003)
[9]  
Murugesan S., Gil S.S., Mark J.E., Beaucage G., J. Inorg. & Organomet Polymers, 14, (2004)
[10]  
Sandler J., Pegel S., Cadek M., Gojny F., van Es M., Lohmar J., Blau W.J., Schulte K., Windle A.H., Shaffer M.S.P., Polymer, 2004, (2001)