Numerical investigation of the bridging and current flow of a positive DC streamer using a 1.5D model

被引:0
作者
Strobel, L. R. [1 ]
Guerra-Garcia, C. [1 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
关键词
positive streamer discharge; low temperature plasma; streamer current pulse; 1.5D numerical model; electrode bridging; dynamic sheath formation; ATMOSPHERIC-PRESSURE; DISCHARGE; AIR; IONIZATION; SIMULATION; BREAKDOWN; NITROGEN; EQUATION; PLANE; POINT;
D O I
10.1088/1361-6463/ad9bc2
中图分类号
O59 [应用物理学];
学科分类号
摘要
Single streamers, at nanosecond-timescales, can be simulated using detailed computational models with a high-dimensional representation. These models are computationally impractical for parametric explorations and simulation of longer times, that can follow many-streamer pulsations and the influence of one streamer burst on the next. This work develops a 1.5D model of a positive DC streamer for simulations beyond the electrode-gap bridging phase, and uses it to parametrically explore the impact of different terms and operational parameters. The geometry of interest is that of a tip-to-plane electrode configuration under DC voltage, and the simulation is followed for the duration of one current pulse (order 500 ns). The numerical model uses an axisymmetric boundary element method to solve for the electric field, as well as a 'stack' of 3 different transient solvers to improve efficiency and allow solving over longer timescales. The model is able to resolve the development of the cathode sheath during the streamer bridging phase using a kinetic flux boundary condition. It also gives qualitative agreement to current waveforms using an equivalent experimental setup. The different phases of the current pulse (streamer propagation, bridging, and current-flow phase) are discussed in detail.
引用
收藏
页数:16
相关论文
共 56 条
[1]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[2]   Ionization processes in spark discharge plasmas [J].
Aleksandrov, NL ;
Bazelyan, EM .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1999, 8 (02) :285-294
[3]   The IST-LISBON database on LXCat [J].
Alves, L. L. .
27TH SUMMER SCHOOL AND INTERNATIONAL SYMPOSIUM ON THE PHYSICS OF IONIZED GASES (SPIG 2014), 2014, 565
[4]  
[Anonymous], IST Lisbon database retrieved
[5]   Comparison of six simulation codes for positive streamers in air [J].
Bagheri, B. ;
Teunissen, J. ;
Ebert, U. ;
Becker, M. M. ;
Chen, S. ;
Ducasse, O. ;
Eichwald, O. ;
Loffhagen, D. ;
Luque, A. ;
Mihailova, D. ;
Plewa, J. M. ;
van Dijk, J. ;
Yousfi, M. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (09)
[6]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[7]   Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations [J].
Bourdon, A. ;
Pasko, V. P. ;
Liu, N. Y. ;
Celestin, S. ;
Segur, P. ;
Marode, E. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2007, 16 (03) :656-678
[8]  
Boyd ID, 2017, CAMB AERO SER, P1, DOI 10.1017/9781139683494
[9]   The use of the ghost fluid method for Poisson's equation to simulate streamer propagation in point-to-plane and point-to-point geometries [J].
Celestin, Sebastien ;
Bonaventura, Zdenek ;
Zeghondy, Barbar ;
Bourdon, Anne ;
Segur, Pierre .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (06)
[10]   Novel Technique for Measurements of Continuous Liquid Jet Core in an Atomizer [J].
Charalampous, G. ;
Hardalupas, Y. ;
Taylor, A. M. K. P. .
AIAA JOURNAL, 2009, 47 (11) :2605-2615