The smoothing parameter selection problem in smoothing spline regression for different data sets

被引:0
|
作者
Aydin, Dursun [1 ]
Omay, Rabia Ece [1 ]
机构
[1] Department of Statistics, Anadolu University, Eskisehir 26470, Turkey
关键词
Computer simulation - Monte Carlo methods - Risk analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies smoothing parameter selection problem in nonparametric regression based on smoothing spline method for different data sets. For this aim, a Monte Carlo simulation study was performed. This simulation study provides a comparison of the five popular selection criteria called as cross-validation (CV), generalized cross-validation (GCV), improved Akaike information criterion (AICc), Mallows' Cp and risk estimation using classical pilots (RCP). Empirical performances of five selection criteria were examined for this simulation and the most suitable one was selected accordingly.
引用
收藏
页码:477 / 482
相关论文
共 50 条
  • [31] Smoothing parameter selection for power optimality in testing of regression curves
    Kulasekera, KB
    Wang, J
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 500 - 511
  • [32] The Estimation Function Approach Smoothing Spline Regression Analysis for Longitudinal Data
    Risnawati
    Fernandes, Adji Achmad Rinaldo
    Nurjannah
    9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [33] SELECTION OF AN OPTIMUM SMOOTHING PARAMETER OF EXPERIMENTAL-DATA
    VASILEV, OB
    SAKHAROV, VI
    ASTRONOMICHESKII ZHURNAL, 1973, 50 (02): : 390 - 399
  • [34] Smoothing Spline Semiparametric Nonlinear Regression Models
    Wang, Yuedong
    Ke, Chunlei
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 165 - 183
  • [35] Comparison of Nonparametric Regression Curves by Spline Smoothing
    Li, Na
    Xu, Xingzhong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (22) : 3972 - 3987
  • [36] Smoothing spline nonlinear nonparametric regression models
    Ke, CL
    Wang, YD
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1166 - 1175
  • [37] On the optimal amount of smoothing in penalised spline regression
    Wand, MP
    BIOMETRIKA, 1999, 86 (04) : 936 - 940
  • [38] SPLINE SMOOTHING WITH AN ESTIMATED ORDER-PARAMETER
    STEIN, ML
    ANNALS OF STATISTICS, 1993, 21 (03): : 1522 - 1544
  • [39] HISAPS: High-order smoothing spline with automatic parameter selection and constraints
    Broberg, Peter H.
    Lindgaard, Esben
    Olesen, Asbjorn M.
    Jensen, Simon M.
    Stagsted, Niklas K. K.
    Bjerg, Rasmus L.
    Grosselle, Riccardo
    Oca, Inigo Urcelay
    Bak, Brian L. V.
    SOFTWAREX, 2025, 29
  • [40] On the Lattice Smoothing Parameter Problem
    Chung, Kai-Min
    Dadush, Daniel
    Liu, Feng-Hao
    Peikert, Chris
    2013 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2013, : 230 - 241