Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT

被引:1
作者
Odeh, Ammar [1 ]
Abu Taleb, Anas [1 ]
机构
[1] Princess Sumaya Univ Technol, Dept Comp Sci, Amman 1196, Jordan
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 81卷 / 03期
关键词
Intrusion detection system (IDS); Internet of Things (IoT); convolutional neural network (CNN); long short-term memory (LSTM); autoencoder; network security; deep learning; data preprocessing; feature selection; cyber threats;
D O I
10.32604/cmc.2024.058052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of Internet of Things (IoT) technology has exponentially increased the number of devices interconnected over networks, thereby escalating the potential vectors for cybersecurity threats. In response, this study rigorously applies and evaluates deep learning models-namely Convolutional Neural Networks (CNN), Autoencoders, and Long Short-Term Memory (LSTM) networks-to engineer an advanced Intrusion Detection System (IDS) specifically designed for IoT environments. Utilizing the comprehensive UNSW-NB15 dataset, which encompasses 49 distinct features representing varied network traffic characteristics, our methodology focused on meticulous data preprocessing including cleaning, normalization, and strategic feature selection to enhance model performance. A robust comparative analysis highlights the CNN model's outstanding performance, achieving an accuracy of 99.89%, precision of 99.90%, recall of 99.88%, and an F1 score of 99.89% in binary classification tasks, outperforming other evaluated models significantly. These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model's effectiveness in multiclass classification tasks, addressing various attack vectors prevalent in IoT setups. The empirical findings from this research demonstrate deep learning's transformative potential in fortifying network security infrastructures against sophisticated cyber threats, providing a scalable, high-performance solution that enhances security measures across increasingly complex IoT ecosystems. This study's outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms, offering a data-driven foundation for future advancements in IoT security strategies.
引用
收藏
页码:4149 / 4169
页数:21
相关论文
共 29 条
[11]   Optimizing IoT intrusion detection system: feature selection versus feature extraction in machine learning [J].
Li, Jing ;
Othman, Mohd Shahizan ;
Chen, Hewan ;
Yusuf, Lizawati Mi .
JOURNAL OF BIG DATA, 2024, 11 (01)
[12]   Does Sex Affect Anticoagulant Use for Stroke Prevention in Nonvalvular Atrial Fibrillation? The Prospective Global Anticoagulant Registry in the FIELD-Atrial Fibrillation [J].
Lip, Gregory Y. H. ;
Rushton-Smith, Sophie K. ;
Goldhaber, Samuel Z. ;
Fitzmaurice, David A. ;
Mantovani, Lorenzo G. ;
Goto, Shinya ;
Haas, Sylvia ;
Bassand, Jean-Pierre ;
Camm, Alan John ;
Ambrosio, Giuseppe ;
Jansky, Petr ;
Al Mahmeed, Wael ;
Oh, Seil ;
van Eickels, Martin ;
Raatikainen, Pekka ;
Steffel, Jan ;
Oto, Ali ;
Kayani, Gloria ;
Accetta, Gabriele ;
Kakkar, Ajay K. ;
Lucas Luciardi, Hector ;
Gibbs, Harry ;
Brodmann, Marianne ;
Cools, Frank ;
Pereira Barretto, Antonio Carlos ;
Connolly, Stuart J. ;
Spyropoulos, Alex ;
Eikelboom, John ;
Corbalan, Ramon ;
Hu, Dayi ;
Nielsen, Jorn Dalsgaard ;
Ragy, Hany ;
Le Heuzey, Jean-Yves ;
Darius, Harald ;
Keltai, Matyas ;
Kakkar, Sanjay ;
Sawhney, Jitendra Pal Singh ;
Agnelli, Giancarlo ;
Koretsune, Yukihiro ;
Sanchez Diaz, Carlos Jerjes ;
Ten Cate, Hugo ;
Atar, Dan ;
Stepinska, Janina ;
Panchenko, Elizaveta ;
Lim, Toon Wei ;
Jacobson, Barry ;
Vinolas, Xavier ;
Rosenqvist, Marten ;
Angchaisuksiri, Pantep ;
Parkhomenko, Alex .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2015, 8 (02) :S12-S20
[13]   A comprehensive study on cybersecurity challenges and opportunities in the IoT world [J].
Lone, Aejaz Nazir ;
Mustajab, Suhel ;
Alam, Mahfooz .
SECURITY AND PRIVACY, 2023, 6 (06)
[14]   RETRACTED: Best features based intrusion detection system by RBM model for detecting DDoS in cloud environment (Retracted Article) [J].
Mayuranathan, M. ;
Murugan, M. ;
Dhanakoti, V. .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (03) :3609-3619
[15]  
Moustafa N, 2015, 2015 MILITARY COMMUNICATIONS AND INFORMATION SYSTEMS CONFERENCE (MILCIS)
[16]   A Critical Review of Artificial Intelligence Based Approaches in Intrusion Detection: A Comprehensive Analysis [J].
Muneer, Salman ;
Farooq, Umer ;
Athar, Atifa ;
Raza, Muhammad Ahsan ;
Ghazal, Taher M. ;
Sakib, Shadman .
JOURNAL OF ENGINEERING, 2024, 2024
[17]   Transient search optimization: a new meta-heuristic optimization algorithm [J].
Qais, Mohammed H. ;
Hasanien, Hany M. ;
Alghuwainem, Saad .
APPLIED INTELLIGENCE, 2020, 50 (11) :3926-3941
[18]   The visual detection of threat: A cautionary tale [J].
Quinlan, Philip T. .
PSYCHONOMIC BULLETIN & REVIEW, 2013, 20 (06) :1080-1101
[19]   The Internet of Things (IoT) in healthcare: Taking stock and moving forward [J].
Rejeb, Abderahman ;
Rejeb, Karim ;
Treiblmaier, Horst ;
Appolloni, Andrea ;
Alghamdi, Salem ;
Alhasawi, Yaser ;
Iranmanesh, Mohammad .
INTERNET OF THINGS, 2023, 22
[20]   An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment [J].
SaiSindhuTheja, Reddy ;
Shyam, Gopal K. .
APPLIED SOFT COMPUTING, 2021, 100