Fatigue life prediction of selective laser melted titanium alloy based on a machine learning approach

被引:3
作者
Liu, Yao [1 ]
Gao, Xiangxi [1 ]
Zhu, Siyao [1 ,2 ]
He, Yuhuai [1 ]
Xu, Wei [1 ]
机构
[1] Beijing Inst Aeronaut Mat, Beijing Key Lab Aeronaut Mat Testing & Evaluat, AECC Key Lab Sci Technol Aeronaut Mat Testing & Ev, Beijing 100095, Peoples R China
[2] TaiHang Lab, 619 Jicui St, Chengdu 610213, Sichuan, Peoples R China
关键词
Titanium alloy; Defect statistical analysis; High cycle fatigue; Machine learning; Fatigue life prediction; MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1016/j.engfracmech.2024.110676
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A machine learning (ML) approach is introduced to predict the high-cycle fatigue (HCF) life of selective laser melted (SLM) TA15 titanium alloy, addressing life prediction variability caused by defect characteristics and spatial distribution. Using HCF data, tensile properties, and defect characteristics across different building directions (BD), a training dataset was established. Comparative analysis shows that incorporating defect parameters significantly enhances the prediction accuracy of the ML model. Correlation analysis identified Adefect/h as highly relevant to fatigue life, enabling a refined training dataset. Incorporating this defect parameter significantly improved the ML model's prediction accuracy. The S-N curve generated from predictions using defect values at 50 % reliability appeared relatively conservative compared to the experimental SN median curve. The S-N curve at +/- 3 sigma reliability closely aligned with experimental results, encompassing nearly all data points. This highlights the potential of the ML approach in predicting fatigue life for SLM titanium alloys.
引用
收藏
页数:16
相关论文
共 34 条
[1]   Fatigue of wire plus arc additive manufactured Ti-6Al-4V in presence of process-induced porosity defects [J].
Akgun, Emre ;
Zhang, Xiang ;
Biswal, Romali ;
Zhang, Yanhui ;
Dore, Matthew .
INTERNATIONAL JOURNAL OF FATIGUE, 2021, 150 (150)
[2]  
[Anonymous], 2017, Goodness-of-Fit-Techniques
[3]   Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance [J].
Cai, Chao ;
Wu, Xu ;
Liu, Wan ;
Zhu, Wei ;
Chen, Hui ;
Qiu, Jasper Chua Dong ;
Sun, Chen-Nan ;
Liu, Jie ;
Wei, Qingsong ;
Shi, Yusheng .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 57 :51-64
[4]   Impact of Hot Isostatic Pressing Temperature on Tensile Properties of TA15 Titanium Alloy Produced via Laser Powder Bed Fusion [J].
Ci, Shiwei ;
Hu, Jiaqi ;
Cheng, Zonghui ;
Liu, Qingwei ;
Xie, Suijie ;
Cai, Xiaoye ;
Dong, Dingping ;
Wang, Qiwei .
COATINGS, 2023, 13 (10)
[5]   Prediction of Maintenance Equipment Failures Using Automated Machine Learning [J].
Ferreira, Luis ;
Pilastri, Andre ;
Sousa, Vitor ;
Romano, Filipe ;
Cortez, Paulo .
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2021, 2021, 13113 :259-267
[6]  
Gu D., 2015, LASER ADDITIVE MANUF
[7]   A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy [J].
Hu, Y. N. ;
Wu, S. C. ;
Wu, Z. K. ;
Zhong, X. L. ;
Ahmed, S. ;
Karabal, S. ;
Xiao, X. H. ;
Zhang, H. O. ;
Withers, P. J. .
INTERNATIONAL JOURNAL OF FATIGUE, 2020, 136
[8]   Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting [J].
Kasperovich, Galina ;
Hausmann, Joachim .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 220 :202-214
[9]  
Liu QC, 2014, ADV MATER RES-SWITZ, V891-892, P1519, DOI [10.4028/www.scientific.net/AMR.891-892.1519, 10.4028/www.scientific.net/AMR.891-892.1524]
[10]   Fatigue life estimation of additively manufactured Ti-6Al-4V: Sensitivity, scatter and defect description in Damage-tolerant models [J].
Macallister, Nicolas ;
Becker, Thorsten Hermann .
ACTA MATERIALIA, 2022, 237