Gene regulatory network inference with extended scores for Bayesian networks

被引:0
|
作者
Vandel, Jimmy [1 ]
Mangin, Brigitte [1 ]
Vignes, Matthieu [1 ]
Leroux, Damien [1 ]
Loudet, Olivier [2 ]
Martin-Magniette, Marie-Laure [3 ,4 ]
De Givry, Simon [1 ]
机构
[1] INRA, UR 875, Unité de Biométrie et Intelligence Artificielle, F-31326, Castanet-Tolosan
[2] INRA, UMR 1318, Institut Jean-Pierre Bourgin, F-78000, Versailles
[3] INRA, UMR 1165, Unité de Recherche en Génomique Végétale, F-91057, Evry
[4] INRA, UMR 518, Mathématiques et Informatique Appliquées, F-75231, Paris
关键词
Bayesian network; Gene regulation; Genetical genomics; Structure learning;
D O I
10.3166/RIA.26.679-708
中图分类号
学科分类号
摘要
Inferring gene regulatory networks tends to use several biological information. Here we use data from genetic markers and expression data in the framework of discrete static bayesian networks. We compare several scores and also the impact of a network connectivity a priori. We propose and compare two models with existing approaches of gene regulatory network inference. On simulated data one of our models reached better results in the case of small sample size. We use this model on real data in Arabidopsis thaliana. © 2012 Lavoisier.
引用
收藏
页码:679 / 708
页数:29
相关论文
共 50 条
  • [31] Constructing Gene Networks by Using a New Bayesian Network Method
    Du, Zhihua
    Wang, Yiwei
    Ji, Zhen
    Wu, Q. H.
    IACSIT-SC 2009: INTERNATIONAL ASSOCIATION OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY - SPRING CONFERENCE, 2009, : 586 - +
  • [32] A hybrid Bayesian network learning method for constructing gene networks
    Wang, Mingyi
    Chen, Zuozhou
    Cloutier, Sylvie
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2007, 31 (5-6) : 361 - 372
  • [33] Inference of Disease-specific Gene Interaction Network Using a Bayesian Network learned by Genetic Algorithm
    Jeong, Daye
    Yeu, Yunku
    Ahn, Jaegyoon
    Yoon, Youngmi
    Park, Sanghyun
    30TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, VOLS I AND II, 2015, : 47 - 53
  • [34] An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection
    Xing, Linlin
    Guo, Maozu
    Liu, Xiaoyan
    Wang, Chunyu
    Wang, Lei
    Zhang, Yin
    BMC GENOMICS, 2017, 18
  • [35] An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection
    Linlin Xing
    Maozu Guo
    Xiaoyan Liu
    Chunyu Wang
    Lei Wang
    Yin Zhang
    BMC Genomics, 18
  • [36] Comparison of Software Packages for Bayesian Network Learning in Gene Regulatory Relationship Mining
    Kang, Yu
    Yang, Xuan
    Sun, Menghai
    Hu, Junfan
    Zhong, Zhiman
    Liu, Jianxiao
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 2010 - 2015
  • [37] Learning Bayesian networks with low inference complexity
    Benjumeda M.
    Larrañaga P.
    Bielza C.
    Progress in Artificial Intelligence, 2016, 5 (1) : 15 - 26
  • [38] Inference of combinatorial neuronal synchrony with Bayesian networks
    Jung, Sungwon
    Nam, Yoonkey
    Lee, Doheon
    JOURNAL OF NEUROSCIENCE METHODS, 2010, 186 (01) : 130 - 139
  • [39] Bayesian Network for Hydrological Model: an inference approach
    Ribeiro, Vitor P.
    Cunha, Angela S. M.
    Duarte, Sergio N.
    Padovani, Carlos R.
    Marques, Patricia A. A.
    Maciel, Carlos D.
    Balestieri, Jose Antonio P.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] Bayesian Network Inference Using Marginal Trees
    Butz, Cory J.
    Oliveira, Jhonatan de S.
    Madsen, Anders L.
    PROBABILISTIC GRAPHICAL MODELS, 2014, 8754 : 81 - 96