Gene regulatory network inference with extended scores for Bayesian networks

被引:0
|
作者
Vandel, Jimmy [1 ]
Mangin, Brigitte [1 ]
Vignes, Matthieu [1 ]
Leroux, Damien [1 ]
Loudet, Olivier [2 ]
Martin-Magniette, Marie-Laure [3 ,4 ]
De Givry, Simon [1 ]
机构
[1] INRA, UR 875, Unité de Biométrie et Intelligence Artificielle, F-31326, Castanet-Tolosan
[2] INRA, UMR 1318, Institut Jean-Pierre Bourgin, F-78000, Versailles
[3] INRA, UMR 1165, Unité de Recherche en Génomique Végétale, F-91057, Evry
[4] INRA, UMR 518, Mathématiques et Informatique Appliquées, F-75231, Paris
关键词
Bayesian network; Gene regulation; Genetical genomics; Structure learning;
D O I
10.3166/RIA.26.679-708
中图分类号
学科分类号
摘要
Inferring gene regulatory networks tends to use several biological information. Here we use data from genetic markers and expression data in the framework of discrete static bayesian networks. We compare several scores and also the impact of a network connectivity a priori. We propose and compare two models with existing approaches of gene regulatory network inference. On simulated data one of our models reached better results in the case of small sample size. We use this model on real data in Arabidopsis thaliana. © 2012 Lavoisier.
引用
收藏
页码:679 / 708
页数:29
相关论文
共 50 条
  • [1] Bayesian Gene Regulatory Network Inference Optimization by means of Genetic Algorithms
    Bevilacqua, Vitoantonio
    Mastronardi, Giuseppe
    Menolascina, Filippo
    Pannarale, Paolo
    Romanazzi, Giuseppe
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2009, 15 (04) : 826 - 839
  • [2] Inference of gene regulatory network by Bayesian network using metropolis-hastings algorithm
    Kirimasthong, Khwunta
    Manorat, Aompilai
    Chaijaruwanich, Jeerayut
    Prasitwattanaseree, Sukon
    Thammarongtham, Chinae
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 276 - +
  • [3] Weighted ensemble learning of Bayesian network for gene regulatory networks
    Njah, Hasna
    Jamoussi, Salma
    NEUROCOMPUTING, 2015, 150 : 404 - 416
  • [4] The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
    Marouen Ben Guebila
    Tian Wang
    Camila M. Lopes-Ramos
    Viola Fanfani
    Des Weighill
    Rebekka Burkholz
    Daniel Schlauch
    Joseph N. Paulson
    Michael Altenbuchinger
    Katherine H. Shutta
    Abhijeet R. Sonawane
    James Lim
    Genis Calderer
    David G.P. van IJzendoorn
    Daniel Morgan
    Alessandro Marin
    Cho-Yi Chen
    Qi Song
    Enakshi Saha
    Dawn L. DeMeo
    Megha Padi
    John Platig
    Marieke L. Kuijjer
    Kimberly Glass
    John Quackenbush
    Genome Biology, 24
  • [5] Inference of Large-Scale Gene Regulatory Networks Using GA-based Bayesian Network and Biological Knowledge
    Tavakolkhah, Pegah
    Rahmati, Mohammad
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 598 - 601
  • [6] The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
    Ben Guebila, Marouen
    Wang, Tian
    Lopes-Ramos, Camila M. M.
    Fanfani, Viola
    Weighill, Des
    Burkholz, Rebekka
    Schlauch, Daniel
    Paulson, Joseph N. N.
    Altenbuchinger, Michael
    Shutta, Katherine H. H.
    Sonawane, Abhijeet R. R.
    Lim, James
    Calderer, Genis
    van IJzendoorn, David G. P.
    Morgan, Daniel
    Marin, Alessandro
    Chen, Cho-Yi
    Song, Qi
    Saha, Enakshi
    DeMeo, Dawn L. L.
    Padi, Megha
    Platig, John
    Kuijjer, Marieke L. L.
    Glass, Kimberly
    Quackenbush, John
    GENOME BIOLOGY, 2023, 24 (01)
  • [7] INFERENCE OF GENE REGULATORY NETWORKS BY EXTENDED KALMAN FILTERING USING GENE EXPRESSION TIME SERIES DATA
    Fouladi, Ramouna
    Fatemizadeh, Emad
    Arab, S. Shahriar
    BIOINFORMATICS: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOINFORMATICS MODELS, METHODS AND ALGORITHMS, 2012, : 150 - 155
  • [8] Computational methods for the Inference of Gene Regulatory Networks
    More, Seema
    Accaamma, V
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2011, 11 (03): : 170 - 176
  • [9] Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    Li, Peng
    Zhang, Chaoyang
    Perkins, Edward J.
    Gong, Ping
    Deng, Youping
    BMC BIOINFORMATICS, 2007, 8 (Suppl 7)
  • [10] Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    Peng Li
    Chaoyang Zhang
    Edward J Perkins
    Ping Gong
    Youping Deng
    BMC Bioinformatics, 8