Heterogeneity-aware integrative regression for ancestry-specific association studies

被引:0
作者
Molstad, Aaron J. [1 ,2 ]
Cai, Yanwei [3 ]
Reiner, Alexander P. [3 ,4 ]
Kooperberg, Charles [3 ,5 ]
Sun, Wei [3 ,5 ,6 ]
Hsu, Li [3 ,5 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Fred Hutchinson Canc Ctr, Div Publ Hlth Sci, Seattle, WA 98109 USA
[4] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA
[5] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[6] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
integrative analysis; population heterogeneity; protein quantitative trait loci; proteome-wide association study; AFRICAN-AMERICANS; DIVERSITY; DISEASE;
D O I
10.1093/biomtc/ujae109
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ancestry-specific proteome-wide association studies (PWAS) based on genetically predicted protein expression can reveal complex disease etiology specific to certain ancestral groups. These studies require ancestry-specific models for protein expression as a function of SNP genotypes. In order to improve protein expression prediction in ancestral populations historically underrepresented in genomic studies, we propose a new penalized maximum likelihood estimator for fitting ancestry-specific joint protein quantitative trait loci models. Our estimator borrows information across ancestral groups, while simultaneously allowing for heterogeneous error variances and regression coefficients. We propose an alternative parameterization of our model that makes the objective function convex and the penalty scale invariant. To improve computational efficiency, we propose an approximate version of our method and study its theoretical properties. Our method provides a substantial improvement in protein expression prediction accuracy in individuals of African ancestry, and in a downstream PWAS analysis, leads to the discovery of multiple associations between protein expression and blood lipid traits in the African ancestry population.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics [J].
Barbeira, Alvaro N. ;
Dickinson, Scott P. ;
Bonazzola, Rodrigo ;
Zheng, Jiamao ;
Wheeler, Heather E. ;
Torres, Jason M. ;
Torstenson, Eric S. ;
Shah, Kaanan P. ;
Garcia, Tzintzuni ;
Edwards, Todd L. ;
Stahl, Eli A. ;
Huckins, Laura M. ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Im, Hae Kyung .
NATURE COMMUNICATIONS, 2018, 9
[2]   Diversity and inclusion in genomic research: why the uneven progress? [J].
Bentley A.R. ;
Callier S. ;
Rotimi C.N. .
Journal of Community Genetics, 2017, 8 (4) :255-266
[3]   Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative [J].
Bhattacharya, Arjun ;
Hirbo, Jibril B. ;
Zhou, Dan ;
Zhou, Wei ;
Zheng, Jie ;
Kanai, Masahiro ;
Pasaniuc, Bogdan ;
Gamazon, Eric R. ;
Cox, Nancy J. .
CELL GENOMICS, 2022, 2 (10)
[4]   African genetic diversity: Implications for human demographic history, modern human origins, and complex disease mapping [J].
Campbell, Michael C. ;
Tishkoff, Sarah A. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2008, 9 :403-433
[5]   Cardiovascular Health in African Americans A Scientific Statement From the American Heart Association [J].
Carnethon, Mercedes R. ;
Pu, Jia ;
Howard, George ;
Albert, Michelle A. ;
Anderson, Cheryl A. M. ;
Bertoni, Alain G. ;
Mujahid, Mahasin S. ;
Palaniappan, Latha ;
Taylor, Herman A., Jr. ;
Willis, Monte ;
Yancy, Clyde W. .
CIRCULATION, 2017, 136 (21) :E393-E423
[6]  
GLCC, 2021, Global lipids genetics consortium results
[7]   The power of genetic diversity in genome-wide association studies of lipids [J].
Graham, Sarah E. ;
Clarke, Shoa L. ;
Wu, Kuan-Han H. ;
Kanoni, Stavroula ;
Zajac, Greg J. M. ;
Ramdas, Shweta ;
Surakka, Ida ;
Ntalla, Ioanna ;
Vedantam, Sailaja ;
Winkler, Thomas W. ;
Locke, Adam E. ;
Marouli, Eirini ;
Hwang, Mi Yeong ;
Han, Sohee ;
Narita, Akira ;
Choudhury, Ananyo ;
Bentley, Amy R. ;
Ekoru, Kenneth ;
Verma, Anurag ;
Trivedi, Bhavi ;
Martin, Hilary C. ;
Hunt, Karen A. ;
Hui, Qin ;
Klarin, Derek ;
Zhu, Xiang ;
Thorleifsson, Gudmar ;
Helgadottir, Anna ;
Gudbjartsson, Daniel F. ;
Holm, Hilma ;
Olafsson, Isleifur ;
Akiyama, Masato ;
Sakaue, Saori ;
Terao, Chikashi ;
Kanai, Masahiro ;
Zhou, Wei ;
Brumpton, Ben M. ;
Rasheed, Humaira ;
Ruotsalainen, Sanni E. ;
Havulinna, Aki S. ;
Veturi, Yogasudha ;
Feng, QiPing ;
Rosenthal, Elisabeth A. ;
Lingren, Todd ;
Pacheco, Jennifer Allen ;
Pendergrass, Sarah A. ;
Haessler, Jeffrey ;
Giulianini, Franco ;
Bradford, Yuki ;
Miller, Jason E. ;
Campbell, Archie .
NATURE, 2021, 600 (7890) :675-+
[8]   Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals [J].
Hou, Kangcheng ;
Ding, Yi ;
Xu, Ziqi ;
Wu, Yue ;
Bhattacharya, Arjun ;
Mester, Rachel ;
Belbin, Gillian M. ;
Buyske, Steve ;
Conti, David V. ;
Darst, Burcu F. ;
Fornage, Myriam ;
Gignoux, Chris ;
Guo, Xiuqing ;
Haiman, Christopher ;
Kenny, Eimear E. ;
Kim, Michelle ;
Kooperberg, Charles ;
Lange, Leslie ;
Manichaikul, Ani ;
North, Kari E. ;
Peters, Ulrike ;
Rasmussen-Torvik, Laura J. ;
Rich, Stephen S. ;
Rotter, Jerome I. ;
Wheeler, Heather E. ;
Wojcik, Genevieve L. ;
Zhou, Ying ;
Sankararaman, Sriram ;
Pasaniuc, Bogdan .
NATURE GENETICS, 2023, 55 (04) :549-+
[9]   Proteomics and disease: opportunities and challenges [J].
Kavallaris, M ;
Marshall, GM .
MEDICAL JOURNAL OF AUSTRALIA, 2005, 182 (11) :575-579
[10]   Regularization in Finite Mixture of Regression Models with Diverging Number of Parameters [J].
Khalili, Abbas ;
Lin, Shili .
BIOMETRICS, 2013, 69 (02) :436-446